

INVESTIGATING OUR NATURAL AND ENGINEERED WORLD.

6th Grade Earth Science

6th Grade Earth Science Teaching & Learning Framework * Clarification statements not provided on framework										
Quarter 1		Quarter 2		Quarter 3		Quarter 4				
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8			
5 weeks	4 weeks	5 weeks	4 weeks	5 weeks	5 weeks	5 weeks	3 weeks			
Solar Sys. & Universe	Earth and Moon	Climate and Weather	Water on the Earth	The Dynamic Earth	Rocks and	Weathering,	Energy/ Conservation			
	g				Minerals	Erosion, Soil				
S6E1. Obtain, evaluate, and	S6E2. Obtain,	S6E4. Obtain, evaluate, and	S6E3. Obtain, evaluate,	S6E5. Obtain, evaluate,	S6E5. Obtain,	S6E5. Obtain,	S6E6. Obtain, evaluate, and			
communicate information	evaluate, and	communicate information	and communicate	and communicate	evaluate, and	evaluate, and	communicate information			
about current scientific	communicate	about how the sun, land, and	information to	information to show	communicate	communicate	about the uses &			
views of the universe and	information about	water affect climate and	recognize the	how Earth's surface is	information to	information to	conservation of various			
how those views evolved.	the effects of the	weather.	significant role of	formed.	show how	show how Earth's	natural resources and how			
a. Ask questions to	relative positions	a. a. Analyze and	water in Earth	a. Ask questions to	Earth's surface is	surface is formed.	they impact the Earth.			
determine changes in models	of the sun, Earth,	interpret data to compare		compare and contrast			a. Ask questions to			
of Earth's position in the	and moon.	and contrast the	a. Ask questions to	the Earth's crust, mantle,			determine the differences			
solar system, and origins of	a. a.	composition of Earth's	determine where water	inner and outer core,	out an	weathering, agents	between			
the universe as evidence that	Develop and	atmospheric layers	is located on Earth's	including temperature,	investigation of	of erosion and	renewable/sustainable			
scientific theories change	use a model	(including the ozone	surface (oceans, rivers,	density, thickness, and	the	transportation, and	energy resources			
with the addition of new	to	layer) and greenhouse	lakes, swamps,	composition.	characteristics of	environments of	b. Design and evaluate			
information.	demonstrate	gases.	groundwater, aquifers,	g. Construct an argument	minerals and	deposition.	solutions for sustaining the			
b. Develop a model to	the phases of	b. b. Plan and carry	and ice) and	using maps and data	how minerals	e. Develop a model	quality and supply of natural			
represent the position of the	the moon by	out an investigation to	communicate the	collected to support a	contribute to	to demonstrate	resources such as water,			
solar system in the Milky	showing the	demonstrate how energy	relative proportion of	claim of how fossils show	rock	how natural	soil, and air.			
Way galaxy and in the known	relative	from the sun transfers	water at each location.	evidence of the changing	composition.	processes	c. Construct an argument			
universe.	positions of	heat to air, land and	b. Plan and carry out an	surface and climate of	c. Construct an	(weathering,	evaluating contributions to			
c. Analyze and interpret data	the sun, Earth,	water at different rates.	investigation to	the Earth.	explanation of	erosion, and	the rise in global			
to compare and contrast the	and moon.	c. c. Develop a model	illustrate the role of the	f. Construct an	how to classify	deposition) and	temperatures over the past			
planets in our solar system in	b. b.	demonstrating the	sun's energy in	explanation of how the	rocks by their	human activity	century.			
terms of:	Construct an	interaction between	atmospheric conditions	movement of	formation and	change rocks and				
size relative to Earth, surface	explanation of	unequal heating and the	that lead to the cycling	lithospheric plates, called	how rocks	the surface of the				
and atmospheric features,	the alignment	rotation of the Earth that	of water.	plate tectonics, can	change through	Earth.				
relative distance from the	of the sun,	causes local and global	c. Ask questions to	cause major geologic	geologic	h. Plan and carry				
sun, and ability to support	Earth, and	wind systems.	identify and	events such as	processes in the	out an investigation				
life.	moon during	d. d. Construct an	communicate, using	earthquakes and volcanic	rock cycle.	to provide evidence				
d. Develop and use a model	solar and	explanation of the	graphs and maps, the	eruptions. (Clarification	c.	that soil is				
to explain the interaction of	lunar	relationship between air	composition, location,	statement: Include		composed of layers				
gravity and inertia that	eclipses.	pressure, fronts, and air	and subsurface	convergent, divergent,		of weathered rocks				
governs the motion of	c. Analyze and	masses and	topography of the	and transform		and decomposed				
objects in the solar sys.	interpret data to	meteorological events	world's oceans.	boundaries.)		organic material.				
e. Ask questions to compare	relate the tilt of the	such as tornados and	d. Analyze and interpret	e.						
and contrast the	Earth to the	thunderstorms.	data to create graphic							
characteristics, composition,	distribution of	e. Analyze and interpret	representations of the							
	sunlight throughout	weather data to explain the	causes and effects of							

INVESTIGATING OUR NATURAL AND ENGINEERED WORLD.

and location of comets, asteroids, and meteoroids.	the year and its effect on seasons.		waves, currents, and tides in Earth's systems.				
AC Extension: Explain the origins of the solar system (SES1a)	interpret data related to short-	Analyze and interpret data to show how temperature and precipitation produce pattern of climate regions (zones) on Earth (SES5d)	Plan and carry out investigations of how	, ,	Apply the principles of relative age (superposition, etc.) to interpret a geologic cross-	Develop a model of the processes and geologic hazards that result from both sudden and	AC Extension: Design and defend a sustainable energy plan based on scientific principles for your location (SEV3d)

6th Grade Earth Science Standards

The Georgia Standards of Excellence for science are designed to provide foundational knowledge and skills for all students to develop proficiency in science. The Project 2061's *Benchmarks for Science Literacy* and the follow up work, *A Framework for K-12 Science Education* were used as the core of the standards to determine appropriate content and process skills for students. The Science Georgia Standards of Excellence focus on a limited number of core disciplinary ideas and crosscutting concepts which build from Kindergarten to high school. The standards are written with the core knowledge to be mastered integrated with the science and engineering practices needed to engage in scientific inquiry and engineering design.

The Georgia Standards for Excellence drive instruction. Hands-on, student-centered, and inquiry-based approaches should be the emphasis of instruction. The standards are a required minimum set of expectations that show proficiency in science. However, instruction can extend beyond these minimum expectations to meet student needs. At the same time, these standards set a maximum expectation on what will be assessed by the Georgia Milestones Assessment System.

Science consists of a way of thinking and investigating, as well a growing body of knowledge about the natural world. To become literate in science, students need to possess sufficient understanding of fundamental science content knowledge, the ability to engage in the science and engineering practices, and to use scientific and technological information correctly. Technology should be infused into the curriculum and the safety of the student should always be foremost in instruction.

INVESTIGATING OUR NATURAL AND ENGINEERED WORLD.

Sixth grade students use records they keep and analyze the data they collect, plan and carry out investigations, describe observations, and show information in different forms. They are able to recognize relationships in simple charts and graphs and find more than one way to interpret their findings. They replicate investigations and compare results to find similarities and differences. Sixth graders study weather patterns and systems by observing and explaining how an aspect of weather can affect a weather system. They are able to construct explanations based on evidence of the role of water in Earth processes, recognize how the presence of land and water in combination with the energy from the sun affect the climate and weather of a region. They use different models to represent systems such as the solar system and the sun/moon/Earth system. They study uses and conservation of Earth's natural resources and use what they observe about the Earth's materials to infer the processes and timelines that formed them.

Earth and Space Science

S6E1. Obtain, evaluate, and communicate information about current scientific views of the universe and how those views evolved.

a. Ask questions to determine changes in models of Earth's position in the solar system, and origins of the universe as evidence that scientific theories change with the addition of new information.

(<u>Clarification statement:</u> Students should consider Earth's position in geocentric and heliocentric models and the Big Bang as it describes the formation of the universe.)

- b. Develop a model to represent the position of the solar system in the Milky Way galaxy and in the known universe.
- c. Analyze and interpret data to compare and contrast the planets in our solar system in terms of:
 - size relative to Earth,
 - surface and atmospheric features,
 - relative distance from the sun, and
 - ability to support life.
- d. Develop and use a model to explain the interaction of gravity and inertia that governs the motion of objects in the solar system.
- e. Ask questions to compare and contrast the characteristics, composition, and location of comets, asteroids, and meteoroids.

INVESTIGATING OUR NATURAL AND ENGINEERED WORLD.

S6E2. Obtain, evaluate, and communicate information about the effects of the relative positions of the sun, Earth, and moon.

- a. Develop and use a model to demonstrate the phases of the moon by showing the relative positions of the sun, Earth, and moon.
- b. Construct an explanation of the alignment of the sun, Earth, and moon during solar and lunar eclipses.
- c. Analyze and interpret data to relate the tilt of the Earth to the distribution of sunlight throughout the year and its effect on seasons.

S6E3. Obtain, evaluate, and communicate information to recognize the significant role of water in Earth processes.

- a. Ask questions to determine where water is located on Earth's surface (oceans, rivers, lakes, swamps, groundwater, aquifers, and ice) and communicate the relative proportion of water at each location.
- b. Plan and carry out an investigation to illustrate the role of the sun's energy in atmospheric conditions that lead to the cycling of water.

(<u>Clarification statement:</u> The water cycle should include evaporation, condensation, precipitation, transpiration, infiltration, groundwater, and runoff.)

- c. Ask questions to identify and communicate, using graphs and maps, the composition, location, and subsurface topography of the world's oceans.
- d. Analyze and interpret data to create graphic representations of the causes and effects of waves, currents, and tides in Earth's systems.

S6E4. Obtain, evaluate, and communicate information about how the sun, land, and water affect climate and weather.

a. Analyze and interpret data to compare and contrast the composition of Earth's atmospheric layers (including the ozone layer) and greenhouse gases.

(Clarification statement: Earth's atmospheric layers include the troposphere, stratosphere, mesosphere, and thermosphere.)

b. Plan and carry out an investigation to demonstrate how energy from the sun transfers heat to air, land and water at different rates.

(Clarification statement: Heat transfer should include the processes of conduction, convection, and radiation.)

- c. Develop a model demonstrating the interaction between unequal heating and the rotation of the Earth that causes local and global wind systems.
- d. Construct an explanation of the relationship between air pressure, fronts, and air masses and meteorological events such as tornados

and thunderstorms.

e. Analyze and interpret weather data to explain the effects of moisture evaporating from the ocean on weather patterns and weather events such as hurricanes.

S6E5. Obtain, evaluate, and communicate information to show how Earth's surface is formed.

- a. Ask questions to compare and contrast the Earth's crust, mantle, inner and outer core, including temperature, density, thickness, and composition.
- b. Plan and carry out an investigation of the characteristics of minerals and how minerals contribute to rock composition.
- c. Construct an explanation of how to classify rocks by their formation and how rocks change through geologic processes in the rock cycle.
- d. Ask questions to identify types of weathering, agents of erosion and transportation, and environments of deposition. (*Clarification statement:* Environments of deposition include deltas, barrier islands, beaches, marshes, and rivers.)
 - e. Develop a model to demonstrate how natural processes (weathering, erosion, and deposition) and human activity change rocks and the surface of the Earth.
 - f. Construct an explanation of how the movement of lithospheric plates, called plate tectonics, can cause major geologic events such as earthquakes and volcanic eruptions.

(Clarification statement: Include convergent, divergent, and transform boundaries.)

- g. Construct an argument using maps and data collected to support a claim of how fossils show evidence of the changing surface and climate of the Earth.
- h. Plan and carry out an investigation to provide evidence that soil is composed of layers of weathered rocks and decomposed organic material.

S6E6. Obtain, evaluate, and communicate information about the uses and conservation of various natural resources and how they impact the Earth.

- a. Ask questions to determine the differences between renewable/sustainable energy resources (examples: hydro, solar, wind, geothermal, tidal, biomass) and nonrenewable energy resources (examples: nuclear: uranium, fossil fuels: oil, coal, and natural gas), and how they are used in our everyday lives.
- b. Design and evaluate solutions for sustaining the quality and supply of natural resources such as water, soil, and air.
- c. Construct an argument evaluating contributions to the rise in global temperatures over the past century.

INVESTIGATING OUR NATURAL AND ENGINEERED WORLD.

(<u>Clarification statement:</u> Tables, graphs, and maps of global and regional temperatures, and atmospheric levels of greenhouse gases such as carbon dioxide and methane, should be used as sources of evidence.)

