2024-2025 AP Chemistry Summer Assignment

As part of your AP Chemistry course, you are expected to prepare for the course over the summer. You will need to memorize the following information before the course begins in the fall. You will be turning in the practice worksheet during the first week of school. If you have questions while working on this assignment, write them down and Mrs. Riemenschneider will be able to help you in August.

1. Memorize the following:

a. Common Symbols from the Periodic Table of Elements

The AP Chemistry periodic table does not contain any element names, only symbols. You must be able to recognize these common element symbols. Bold items are anomalous names. Helpful Quizlet: <u>https://quizlet.com/_6illr7?x=1jqt&i=vnwa9</u>

 b. Name and Symbols of Metal Cations and Polyatomic Ions Memorize the name, chemical formula, and charge(s) of the common ions listed in the two tables provided below. Both tables must be memorized. Helpful Quizlet: <u>https://quizlet.com/_6illvh?x=1jqt&i=vnwa9</u>

2. Be able to name and write formulas for ionic compounds, covalent compounds, and acids.

You will frequently see the names for compounds and knowing their formula is imperative for understanding. Use the flowchart attached to help you determine how to name and write formulas. A flow chart is only one way of presenting this information, can you use a third study method to present it another way? Helpful Quizlet: <u>https://quizlet.com/_9v0v0w?x=1qt&i=vnwa9</u>

3. Complete the practice worksheet attached.

This worksheet contains practice problems that will prepare you for your first quiz. It includes material listed above as well as review questions on skills most commonly seen in AP Chemistry. Your answers to all calculation questions should include correct units. This page will be turned in during the first week of school

What to expect on the first quiz:

The quiz is <u>NOT</u> multiple choice. Be prepared to show work and explain answers.

- Given an element's symbol or chemical formula, provide the element or formula's name and vice versa.
- Given a polyatomic ion, provide its chemical formula (including charge) and vice versa.
- Be able to name ionic and covalent formulas, including acids.
- Complete basic stoichiometry problems and answer questions using appropriate significant figures.

Final Note: Class Materials

You will need a binder for this course. It needs to have at least 9 tabs as well and loose leaf notebook paper. You will also need a scientific calculator. While a graphing calculator is nice, they are expensive. A <u>TI-30XS</u>, or equivalent, will be appropriate. It needs to be able to do logarithmic calculations. If any of these purchases place an undue financial burden on your family, let Mrs. Riemenschneider know during the first week of school.

Common Symbols from the Periodic Table of Elements

aluminum	Al	chromium	Cr	lead	Pb	radon	Rn
antimony	Sb	cobalt	Co	lithium	Li	rubidium	Rb
argon	Ar	copper	Cu	magnesiun	n Mg	selenium	Se
arsenic	As	fluorine	F	manganese	e Mn	silicon	Si
barium	Ba	francium	Fr	mercury	Hg	silver	Ag
beryllium	Be	gallium	Ga	neon	Ne	sodium	Na
bismuth	Bi	germanium	n Ge	nickel	Ni	strontium	Sr
boron	В	gold	Au	nitrogen	Ν	sulfur	S
bromine	Br	helium	He	oxygen	0	tin Sn	
calcium	Ca	hydrogen	Н	phosphoru	s P	tungsten	W
carbon	C	iodine	Ι	platinum	Pt	uranium	U
cesium	Cs	iron	Fe	potassium	K	xenon	Xe
chlorine	Cl	krypton	Kr	radium	Ra	zinc	Zn

Metal Cations				
Sb ⁺³ Antimony(III)	Pb ⁺² Lead(II)			
Sb ⁺⁵ Antimony(V)	Pb ⁺⁴ Lead(IV)			
Bi ⁺³ Bismuth(III)	Mn ⁺² Manganese(II)			
Bi ⁺⁵ Bismuth(V)	Mn ⁺³ Manganese(III)			
Cd ⁺² Cadmium	Mn ⁺⁴ Manganese(IV)			
Cr ⁺² Chromium(II)	Mn ⁺⁷ Manganese(VII)			
Cr ⁺³ Chromium(III)	$\mathrm{Hg_2}^{+2}\mathrm{Mercury}(\mathrm{I})$			
Co ⁺² Cobalt(II)	Hg ⁺² Mercury(II)			
Co ⁺³ Cobalt(III)	Ni ⁺² Nickel(II)			
Cu ⁺¹ Copper(I)	Ni ⁺³ Nickel(III)			
Cu ⁺² Copper(II)	Ag ⁺¹ Silver			
Au ⁺¹ Gold(I)	Sn ⁺² Tin(II)			
Au ⁺³ Gold(III)	Sn ⁺⁴ Tin(IV)			
Fe ⁺² Iron(II)	Zn ⁺² Zinc			
Fe ⁺³ Iron(III)				

Common Polyatomic Ions

monovalent polyatomic cations (+1 charge):

H₃O⁺ hydronium

NH₄⁺ ammonium

monovalent polyatomic anions (-1 charge):

BrO_4^-	perbromate
BrO ₃ -	bromate
BrO ₂ -	bromite
BrO ⁻	hypobromite
ClO ₄ -	perchlorate
ClO ₃ -	chlorate
ClO ₂ -	chlorite
ClO-	hypochlorite
IO_4^-	periodate
IO ₃ -	iodate
IO ₂ -	iodite
IO ⁻	hypoiodite
MnO_4^-	permanganate
MnO ₃ -	manganate
NO ₃ -	nitrate
NO ₂ ⁻	nitrite
$C_2H_3O_2^-$	acetate
CH ₃ COO ⁻	acetate
CN ⁻	cyanide
OCN ⁻	cyanate
SCN ⁻	thiocyanate
OH-	hydroxide
N ₃ ⁻	azide
NH_2^-	amide
O_2^{-}	superoxide

divalent polyatomic anions (-2 charge):

CrO_4^{-2}	chromate
$Cr_2O_7^{-2}$	dichromate
SO_4^{-2}	sulfate
SO_3^{-2}	sulfite
S ₂ O ₃ ⁻²	thiosulfate
CO ₃ ⁻²	carbonate
$C_2O_4^{-2}$	oxalate
O_2^{-2}	peroxide

tri and tetravalent anions (-3/-4 charge):

BO_{3}^{-3}	borate
PO_{3}^{-3}	phosphite
PO_4^{-3}	phosphate
AsO_4^{-3}	arsenate
AsO_3^{-3}	arsenite

polyatomic anions containing hydrogen:

HCO ₃ -	hydrogen carbonate (aka bicarbonate)
HSO ₄ -	hydrogen sulfate (aka bisulfate)
HSO ₃ -	hydrogen sulfite (aka bisulfite)
HPO ₄ ⁻²	hydrogen phosphate
$H_2PO_4^-$	dihydrogen phosphate
HS ⁻	hydrogen sulfide

Significant Figures and Uncertainty in Measurement and Calculations:

1. Measured Numbers:

All measured numbers have some degree of uncertainty.

When recording measurements, *record only the significant figures*. Record measurements to include one decimal estimate beyond the smallest increment on the measuring device.

Examples (consider a measuring instrument like a ruler):

- > If smallest increment = 1m, then record measurement o 0.1m (i.e. 3.1m)
- > If smallest increment = 0.1m, then record measurement to 0.01m (i.e. 5.67 m)
- > If smallest increment = 0.01m, then record measurement to 0.001m (i.e. 12.675 m)
- c. Unless otherwise stated the uncertainty in the last significant figure (*the uncertain digit*) is assumed to be ± 1 unit. Modern digital instruments and many types of volumetric glassware will state the level of uncertainty.

Name:

AP Chemistry Summer Assignment Practice Worksheet

Part 1: Naming and Writing Formulas

Antimony tribromide	Aluminum sulfide
Lithium oxide	P ₄ S ₅
Tin (II) hydroxide	chlorine dioxide
B ₂ Si	NF ₃
Iron (III) phosphide	Cobalt (III) carbonate
Hydrogen iodide	SeF ₆
Zn ₃ (PO ₄) ₂	Be(NO ₃) ₂
Dinitrogen trioxide	Na ₂ (SO ₃)
Sodium hydroxide	Iodine pentafluoride
Cu(CH ₃ COO) ₂	Hexaboron silicide
Si ₂ Br ₆	Cu(HCO ₃) ₂
Phosphorus triiodide	CH ₄

Fill in the symbols and charges of the ions and then write the correct chemical formulas and the chemical names in the corresponding blocks. The first one is done for you.

IONS	Sodium Na ⁺	Calcium	Aluminum	Ammonium	Hydrogen
Chloride	NaCl				
Cl-	Sodium chloride				
Nitrate					
Oxide					
Sulfide					
Phosphate					
Iodide					

Part 2: Stoichiometry Review

- 1. How many grams are in a 2.8 mol sample of iron?
- Given the equation: 2 K + Cl₂ → 2 KCl How many grams of KCl are produced from 1.00 g of Cl₂ and excess K?
- 3. What is the percent composition by mass of each element in $Ca_3(PO_4)_2$?
- 4. The following reaction occurs: NaCl + AgNO₃ → AgCl + NaNO₃
 a. How many grams of AgCl result from the reaction of 1.30 g of NaCl and 3.5 g of AgNO₃?

- b. Identify the limiting reactant and the excess reactant.
- c. How much of the excess reactant is left over?
- d. If the reaction actually yielded 2.7g, what is the percent yield and the percent error for the reaction?
- 5. What is the empirical formula of xircon if its percent composition by mass is 34.91% O, 15.32% Si, and 49.76% Zr?
- 6. How many atoms of Aluminum are in a 63 g sample of Al_2O_3 ?
- 7. Calculate the number of moles of O_2 gas present in a sample that contains 4.00×10^{29} molecules.