2025-2026 AP Chemistry Summer Assignment

As part of your AP Chemistry course, you are expected to prepare for the course over the summer. You will need to memorize the following information before the course begins in the fall. While you will not be submitting any physical work, you should be ready for a quiz on this information in the first days of school. If you have any questions about this assignment, please email Mrs. Riemenschneider (christina.riemenschneider@cobbk12.org) for clarifications.

1. Memorize the following:

a. Common Symbols from the Periodic Table of Elements

The AP Chemistry periodic table does not contain any element names, only symbols. You must be able to recognize these common element symbols. Bold items are anomalous names. Helpful Ouizlet: https://quizlet.com/ 6illr7?x=1jqt&i=vnwa9

b. Name and Symbols of Metal Cations and Polyatomic Ions

Memorize the **name**, **chemical formula**, and **charge(s)** of the common ions listed in the two tables provided below. Both tables must be memorized.

Helpful Quizlet: https://quizlet.com/_6illvh?x=1jqt&i=vnwa9

2. Be able to name and write formulas for ionic compounds, covalent compounds, and acids.

You will frequently see the names for compounds and knowing their formula is imperative for understanding. Use the flowchart attached to help you determine how to name and write formulas. A flow chart is only one way of presenting this information, can you use a third study method to present it another way? Helpful Quizlet: https://quizlet.com/_9v0v0w?x=1qqt&i=vnwa9

3. Complete the practice worksheet attached.

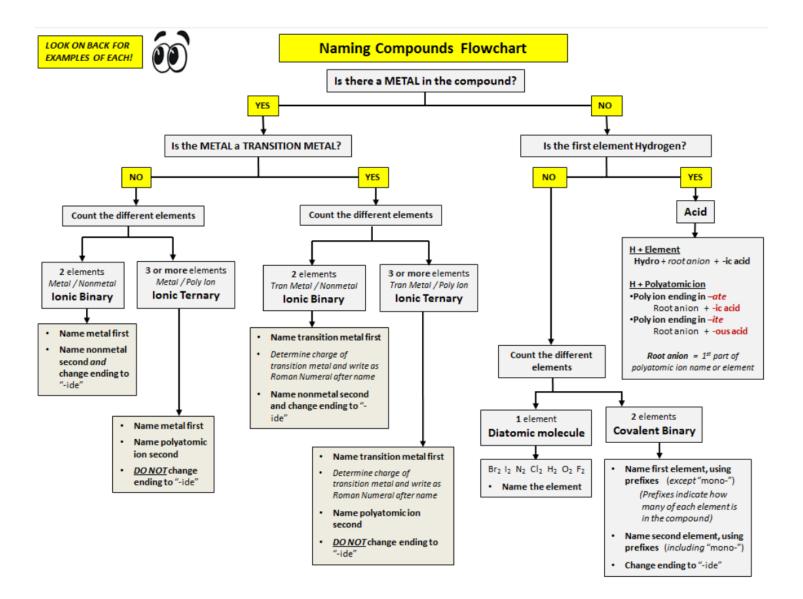
This worksheet contains practice problems that will prepare you for your first quiz. It includes material listed above as well as review questions on skills most commonly seen in AP Chemistry. Your answers to all calculation questions should include correct units. You will turn this in during the first week of school

What to expect on the first quiz:

The quiz is NOT multiple choice. Be prepared to show work and explain answers.

- Given an element's symbol or chemical formula, provide the element or formula's name and vice versa.
- Given a polyatomic ion, provide its chemical formula (including charge) and vice versa.
- Be able to name ionic and covalent formulas, including acids.
- Complete basic stoichiometry problems and answer questions using appropriate significant figures.

Final Note: Class Materials


You will need a binder with dividers and paper for this class. You will also need a scientific calculator. While a graphing calculator is nice, they are expensive. A <u>TI-30XS</u>, or equivalent, will be appropriate. It needs to be able to do logarithmic calculations. If any of these purchases place an undue financial burden on your family, let Mrs. Riemenschneider know.

Common Symbols from the Periodic Table of Elements

aluminum	Al	chromium	Cr	lead	Pb	radon	Rn
antimony	Sb	cobalt	Co	lithium	Li	rubidium	Rb
argon	Ar	copper	Cu	magnesiun	n Mg	selenium	Se
arsenic	As	fluorine	F	manganese	e Mn	silicon	Si
barium	Ba	francium	Fr	mercury	Hg	silver	$\mathbf{A}\mathbf{g}$
beryllium	Be	gallium	Ga	neon	Ne	sodium	Na
bismuth	Bi	germanium	ı Ge	nickel	Ni	strontium	Sr
boron	В	gold	Au	nitrogen	N	sulfur	S
bromine	Br	helium	He	oxygen	O	tin Sn	
calcium	Ca	hydrogen	Н	phosphoru	s P	tungsten	\mathbf{W}
carbon	C	iodine	I	platinum	Pt	uranium	U
cesium	Cs	iron	Fe	potassium	K	xenon	Xe
chlorine	Cl	krypton	Kr	radium	Ra	zinc	Zn

Metal Cations				
Sb ⁺³ Antimony(III)	Pb ⁺² Lead(II)			
Sb ⁺⁵ Antimony(V)	Pb ⁺⁴ Lead(IV)			
Bi ⁺³ Bismuth(III)	Mn ⁺² Manganese(II)			
Bi ⁺⁵ Bismuth(V)	Mn ⁺³ Manganese(III)			
Cd ⁺² Cadmium	Mn ⁺⁴ Manganese(IV)			
Cr ⁺²	Mn ⁺⁷ Manganese(VII)			
Chromium(II)	Hg_2^{+2} Mercury(I)			
Cr ⁺³	Hg ⁺² Mercury(II)			
Chromium(III)	Ni ⁺² Nickel(II)			
Co ⁺² Cobalt(II)	Ni ⁺³ Nickel(III)			
Co ⁺³ Cobalt(III)				
Cu ⁺¹ Copper(I)	Ag ⁺¹ Silver			
Cu ⁺² Copper(II)	Sn ⁺² Tin(II)			
Au ⁺¹ Gold(I)	Sn ⁺⁴ Tin(IV)			
Au ⁺³ Gold(III)	Zn ⁺² Zinc			
Fe ⁺² Iron(II)				
Fe ⁺³ Iron(III)				

	Common I	Polyatomic I	ons		
monovalent polyatomic cations (+1 charge):		divalent po	olyatomic anions (-2 charge):		
H ₃ O ⁺ NH ₄ ⁺	hydronium ammonium	CrO ₄ -2	chromate		
monovalent polyatomic anions (-1 charge):		$Cr_2O_7^{-2}$ SO_4^{-2} SO_3^{-2}	dichromate sulfate sulfite		
BrO ₄ ⁻ BrO ₃ ⁻ BrO ₂ ⁻	perbromate bromate bromite	$S_2O_3^{-2}$ CO_3^{-2} $C_2O_4^{-2}$	thiosulfate carbonate oxalate		
BrO ⁻ ClO ₄ ⁻ ClO ₃ ⁻	hypobromite perchlorate chlorate		O ₂ -2 peroxide tri and tetravalent anions (-3/-4 charge):		
ClO ₂ - ClO- IO ₄ - IO ₃ - IO ₂ -	chlorite hypochlorite periodate iodate iodite	BO ₃ -3 PO ₃ -3 PO ₄ -3 AsO ₄ -3 AsO ₃ -3	borate phosphite phosphate arsenate arsenite		
IO- MnO ₄ - MnO ₃ -	hypoiodite permanganate manganate		c anions containing hydrogen:		
NO ₃ ⁻ NO ₂ ⁻ C ₂ H ₃ O ₂ ⁻ CH ₃ COO ⁻ CN ⁻	nitrate nitrite acetate acetate cyanide	HCO ₃ - HSO ₄ - HSO ₃ - HPO ₄ -2 H ₂ PO ₄ -	hydrogen carbonate (aka bicarbonate) hydrogen sulfate (aka bisulfate) hydrogen sulfite (aka bisulfite) hydrogen phosphate dihydrogen phosphate		
OCN- SCN- OH- N ₃ -	cyanate thiocyanate hydroxide azide	HS ⁻	hydrogen sulfide		
$NH_2^ O_2^-$	amide superoxide				

AP Chemistry Summer Assignment Practice Worksheet

Part 1: Naming and Writing Formulas

Antimony tribromide	Aluminum sulfide
Lithium oxide	P ₄ S ₅
Tin (II) hydroxide	chlorine dioxide
B ₂ Si	NF ₃
Iron (III) phosphide	Cobalt (III) carbonate
Hydrogen iodide	SeF ₆
$Zn_3(PO_4)_2$	Be(NO ₃) ₂
Dinitrogen trioxide	Na ₂ (SO ₃)
Sodium hydroxide	Iodine pentafluoride
Cu(CH ₃ COO) ₂	Hexaboron silicide
Si_2Br_6	Cu(HCO ₃) ₂
Phosphorus triiodide	CH ₄

Fill in the symbols and charges of the ions and then write the correct chemical formulas and the chemical names in the corresponding blocks. The first one is done for you.

IONS	Sodium Na ⁺	Calcium	Aluminum	Ammonium	Hydrogen
Chloride	NaCl				
Cl-	Sodium chloride				
Nitrate					
Oxide					
Sulfide					
Phosphate					
Iodide					

Part 2: Stoichiometry Review

1. How many grams are in a 2.8 mol sample of iron? 2. Given the equation: $2 K + Cl_2 \rightarrow 2 KCl$ How many grams of KCl are produced from 1.00 g of Cl₂ and excess K? 3. What is the percent composition by mass of each element in Ca₃(PO₄)₂? 4. The following reaction occurs: $NaCl + AgNO_3 \rightarrow AgCl + NaNO_3$ a. How many grams of AgCl result from the reaction of 1.30 g of NaCl and 3.5 g of AgNO₃? b. Identify the limiting reactant and the excess reactant. c. How much of the excess reactant is left over? d. If the reaction actually yielded 2.7g, what is the percent yield and the percent error for the reaction? 5. What is the empirical formula of xircon if its percent composition by mass is 34.91% O, 15.32% Si, and 49.76% Zr? 6. How many atoms of Aluminum are in a 63 g sample of Al₂O₃? 7. Calculate the number of moles of O_2 gas present in a sample that contains 4.00×10^{29} molecules.