$3^{\text {rd }}$ Grade Mathematics Teaching \& Learning Framework

Semester 1				Semester 2				
Unit 1 3 weeks	Unit 2 6 weeks	Unit 3 4 weeks	Unit 4 5 weeks	Unit 5 3 weeks	Unit 6 5 weeks	Unit 7 4 weeks	Unit 8 3 weeks	Unit 9 3 weeks
Building a Strong Foundation 3.NR. 1 3.PAR. 2 3.MDR. 5	Exploring Multiplication 3.PAR. 3 3.MDR. 5 3.GSR. 7	Relating Multiplication to Division 3.PAR. 3 3.MDR. 5	Place Value, Addition and Subtraction up to 10,000 3.NR. 1 3.PAR. 2 3.MDR. 5	Two-Step Problems and Time 3.PAR.2,3 3.MDR. 5	Fractions as Numbers 3.NR. 4	Connecting Length, Perimeter, and Area 3.GSR.7,8 3.PAR. 3 3.MDR. 5	TwoDimensional Shapes 3.GSR. 6	Culminati ng Capstone Unit
3.NR.1.1 (Read and write multi-digit numbers up to 1,000) 3.NR.1.2 (Compare numbers up to 1,000) 3.PAR.2.1 (Fluently add and subtract within 1,000) 3.MDR.5.1 (Analyze graphs) 3.MDR.5.4 (Measure lengths to the whole inch) 3.MDR.5.5 (Estimate and measure lengths)	3.PAR.3.1 (Numeric patterns) 3.PAR.3.2 (Multiplication strategies) 3.PAR.3.3 (Properties of operations) 3.PAR.3.4 (Meaning of the equal sign) 3.PAR.3.6 (Multiplication word problems within 100) 3.GSR.7.1 (Investigate area) 3.GSR.7.2 (Determine area by tiling and counting) 3.MDR.5.5 (Estimate and measure volumes, and masses)	3.PAR.3.2 (Multiplication/ division strategies) 3.PAR.3.3 (Properties of operations) 3.PAR.3.5 (Multiplying by multiples of 10) 3.PAR.3.6 (Multiplication \& division word problems within 100 using strategies) 3.PAR.3.7 (Multiplication and division within 100 using equations) 3.MDR.5.5 (Estimate and measure volumes, and masses)	3.NR.1.1 (Read and write multidigit numbers up to 10,000) 3.NR.1.2 (Compare numbers up to 10,000) 3.NR.1.3 (Round to the nearest 10 or 100) 3.PAR.2.1 (Fluently add and subtract within 1,000) 3.PAR.2.2 (Add/sub word problems within 10,000) 3.MDR.5.1 (Analyze graphs)	3.PAR.2.1 (Fluently add and subtract within 1,000 to solve problems) 3.PAR.3.7 (x / \div equations with a variable) 3.MDR.5.2 (Tell and write time to the nearest minutes) 3.MDR.5.3 (Solve problems using elapsed time) 3.PAR. 2 (Add/sub word problems within 10,000)	3.NR.4.1 (Describe a unit fraction) 3.NR.4.2 (Compare two-unit fractions) 3.NR.4.3 (Represent fractions) 3.NR.4.4 (Recognize and generate equivalent fractions)	3.MDR.5.4 (Use rulers to measure length) 3.MDR.5.5 (Estimate and measure lengths) 3.GSR.8.1 (Perimeter of a polygon) 3.GSR.8.2 (Relationship between area and perimeter) 3.GSR.7.2 (Area of rectangles by tiling and counting) 3.GSR.7.3 (Area using multiplication) 3.PAR.3.7 (Multiplication and division within 100) 3.MDR.5.1 (Analyze graphs) 3.PAR.3.2 (Multiplication \& division fluency)	3.GSR.6. 1 (Line segments and right angles) 3.GSR.6.2 (Classify, compare, contrast analyze 3D figures) 3.GSR.6.3 (Lines of symmetry) 3.PAR. 2 (Add/sub word problems within 10,000) 3.MDR. 5 (Solve measurement problems) 3.NR. 4 (Recognize and generate equivalent fractions) 3.NR. 1 (Read and write multi-digit numbers up to 10,000)	$\begin{gathered} \text { All } \\ \text { standards. } \end{gathered}$

[^0] as possible in order to stress the natural connections that exist among mathematical topics.
The Framework for Statistical Reasoning, Mathematical Modeling Framework, and the K-12 Mathematical Practices should be taught throughout the units.
Key for Course Standards: NR: Numerical Reasoning, PAR: Patterning \& Algebraic Reasoning, GSR: Geometric \& Spatial Reasoning $\overline{\text { Georgia Department of Education }}$

GEORGIA'S K-12 MATHEMATICS STANDARDS 2021

Governor Kemp and Superintendent Woods are committed to the best set of academic standards for Georgia's students - laying a strong foundation of the fundamentals, ensuring age- and developmentally appropriate concepts and content, providing instructional supports to set our teachers up for success, protecting and affirming local control and flexibility regarding the use of mathematical strategies and methods, and preparing students for life. These Georgia-owned and Georgia-grown standards leverage the insight, expertise, experience, and efforts of thousands of Georgians to deliver the very best educational experience for Georgia's 1.7 million students.

In August 2019, Governor Brian Kemp and State School Superintendent Richard Woods announced the review and revision of Georgia's K-12 mathematics standards. Georgians have been engaged throughout the standards review and revision process through public surveys and working groups. In addition to educator working groups, surveys, and the Academic Review Committee, Governor Kemp announced a new way for Georgians to provide input on the standards: the Citizens Review Committee, a group composed of students, parents, business and community leaders, and concerned citizens from across the state. Together, these efforts were undertaken to ensure Georgians will have buy-in and faith in the process and product.

The Citizens Review Committee provided a charge and recommendations to the working groups of educators who came together to craft the standards, ensuring the result would be usable and friendly for parents and students in addition to educators. More than 14,000 Georgians participated in the state's public survey from July through September 2019, providing additional feedback for educators to review. The process of writing the standards involved more than 200 mathematics educators -- from beginning to veteran teachers, representing rural, suburban, and metro areas of our state.

Grade-level teams of mathematics teachers engaged in deep discussions; analyzed stakeholder feedback; reviewed every single standard, concept, and skill; and provided draft recommendations. To support fellow mathematics teachers, they also developed learning progressions to show when key concepts were introduced and how they progressed across grade levels, provided examples, and defined age/developmentally appropriate expectations.

These teachers reinforced that strategies and methods for solving mathematical problems are classroom decisions -- not state decisions -- and should be made with the best interest of the individual child in mind. These recommended revisions have been shared with the Academic Review Committee, which is composed of postsecondary partners, age/development experts, and business leaders, as well as the Citizens Review Committee, for final input and feedback.

Based on the recommendation of Superintendent Woods, the State Board of Education will vote to post the draft K-12 mathematics standards for public comment. Following public comment, the standards will be recommended for adoption, followed by a year of teacher training and professional learning prior to implementation.

Use of Mathematical Strategies and Methods \& Affirming Local Control

These standards preserve and affirm local control and flexibility regarding the use of the "standard algorithm" and other mathematical strategies and methods. Students have the right to use any strategy that produces accurate computations, makes sense, and is appropriate for their level of understanding.

Therefore, the wording of these standards allows for the "standard algorithm" as well as other cognitive strategies deemed developmentally appropriate for each grade level. Revised state tests will not measure the students' use of specific mathematical strategies and methods, only whether students understand the key mathematical skills and concepts in these standards.

Teachers are afforded the flexibility to support the individual needs of their students. It is critical that teachers and parents remain partners to help each child grow to become a mathematically literate citizen.

Georgia's K-12 Mathematics Standards - 2021
Mathematics Big Ideas and Learning Progressions, K-5

Mathematics Big Ideas, K-5

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
MATHEMATICAL PRACTICES \& MODELING					
DATA \& STATISTICAL REASONING					
NUMERICAL REASONING (NR)					
PATTERNING \& ALGEBRAIC REASONING (PAR)					
GEOMETRIC \& SPATIAL REASONING (GSR)					

K-5 MATHEMATICS: LEARNING PROGRESSIONS						
Key Concepts	K	1	2	3	4	5
NUMERICAL REASONING						
Numbers (whole numbers, fractions, and decimal numbers)	- Whole numbers to 100	- Whole numbers to 120 - Partition shapes into halves and quarters/fourths (fourths) with no shading	- Whole numbers to 1000 - Partition shapes into halves, thirds and quarters (fourths) with no shading	- Whole numbers to 10,000 - Unit fractions with denominators of 2, 3, 4, 6, and 8 - Represent fractions - Equivalence of simple fractions - Introduce shading to identify and compare fractional parts	- Whole numbers to 100,000 - Non-unit fractions with denominators of $2,3,4,5$, $6,8,10,12$, and 100 - Fractions with like denominators - Decimal fractions (tenths and hundredths)	- Multi-digit whole numbers - Fractions with unlike denominators - Fractions greater than 1 - Decimal fractions to thousandths
Counting	- Counting forward to 100 - Counting backward from 20 - Counting objects to 20	- Counting forward and backward within 120 - Skip counting by 2 s , 5 s , and 10 s - Counting objects to 120	- Counting forward and backward within 1000 - \quad Skip counting by 2 s, - $5,10 \mathrm{~s}, 25 \mathrm{~s}$, and 100 s Counting objects to 1000	- Counting unit fractions	- Counting non-unit fractions	- Counting decimal numbers
Place Value	- Compose and decompose numbers within 20 - Identify and write numerals to 20	- Compose and decompose 2-digit numbers	- Hundreds, tens and ones in 3-digit numbers	- Round numbers to 1000 to nearest 10 or 100 - Read \& write multi-digit whole numbers to thousands	- Magnitude of place value - Multi-digit whole numbers to 100,000 - Round multi-digit whole numbers - Fractions with - denominators of 10 or 100	- Magnitude of place value extended to decimal numbers - Powers of 10 to 10^{3} - Read \& write decimal numbers to thousandths place - Round decimal numbers to hundredths place
Comparisons	- Comparing objects up to 10 - Comparing numbers of objects in a set from 1-10	- Comparing numbers to 100	- Comparing numbers to 1,000	- Comparing numbers to 10,000 - Unit fractions	- Multi-digit numbers - Fractions less than 1 - Decimal fractions to hundredths place	- Decimal fractions to thousandths place - Fractions greater than 1
Computational Fluency	- Fluency with addition and subtraction within 5	- Fluency with addition and subtraction within 10	- Fluency using mental math up to 20 - Fluency with strategies within 100	- Fluency with multiplication and division with single-digit numbers - Fluency with addition and subtraction within 1,000	- Fluency with addition and subtraction with multi-digit whole numbers	- Fluency with multiplication and division with multi-digit whole numbers
 Subtraction	- Single-digit numbers within 10	- Within 20 (using properties of operations) - Within 100 (using base ten understanding)	- Within 1,000 (using tools and strategies)	- Within 10,000	- Within 100,000 - Fractions with like denominators	- Fractions with unlike denominators - Decimal fractions to the hundredths place
Multiplication \& Division			- Building arrays	- Within 100 - Multiply by multiples of 10	- Factors and multiples - Prime and composite numbers - Multiply by multi-digit whole numbers - Divide by 1-digit divisors	- Multiply multi-digit whole numbers - Multiply fractions and whole numbers - Divide unit fractions and whole numbers - Reason about multiplying by a fraction $>,<$, or $=1$
Expressions						- Simple numerical expressions involving whole numbers with or without grouping symbols - Express fractions as division problems

K-5 MATHEMATICS: LEARNING PROGRESSIONS						
Key Concepts	K	1	2	3	4	5
PATTERNING \& ALGEBRAIC REASONING						
Patterns	- Repeating patterns with numbers and shapes - Explain the rationale for the pattern.	- Growing and repeating patterns of $1 \mathrm{~s}, 5 \mathrm{~s}$, and 10s - Repeated operations, shapes or numbers	- Numerical patterns involving addition and subtraction	- Numerical patterns related to multiplication - Make predictions based on patterns	- Generate number and shape patterns that follow a rule - Represent and describe patterns	- Generate two numerical patterns using a given rule - Identify relationships using a table
Graphing						- Plot order pairs in first quadrant
GEOMETRIC \& SPATIAL REASONING						
Shapes and Properties	- Identify, sort, classify, analyze, and compare 2D \& 3D based on attributes using informal language - Positional words	- Identify, sort, and classify 2D \& 3D shapes based on specific attributes using formal language and geometric properties - Compose 2D shapes \& 3D shapes	- Describe, compare and sort 2-D and 3-D shapes given a set of attributes - Identify lines of symmetry in everyday objects	- Quadrilaterals - Parallel \& perpendicular line segments, points, lines, line segments, \& right angles and presence or absence of these in quadrilaterals - Lines of symmetry with quadrilaterals	- Points, lines, line segments, rays, angles, and parallel \& perpendicular line segments - Classify, compare, \& contrast polygons based on presence or absence of parallel or perpendicular line segments, angles of a specified size or side lengths.	- Classify polygons based on geometric properties - Relationships between categories and subcategories of shapes
Geometric Measurement				- Area of rectangles - Perimeter of rectangles	- Area and perimeter of composite rectangles - Angle measurement	- Volume of right rectangular prisms
MEASUREMENT \& DATA REASONING						
Measurement \& Data	- Measurable attributes of length, height, width and weight - Classify and sort up to 10 objects by attributes - Display and interpret categorical data with up to 10 data points on graphs	- Measure length in non-standard units - Compare, describe and order up to 3 objects using length in nonstandard units - Display and interpret categorical data (with up to 3 categories)	- Measure length to nearest whole unit - Use tools such as constructed rulers and standard rulers - Choose units (in, ft, yd) appropriately - Display and interpret categorical data (with up to 4 categories)	- Measure liquid volume, length and mass in customary units - Use rulers to measure lengths in halves and fourths of an inch - Analyze numerical and categorical data with whole number values	- Measure liquid volume, distance, and mass using the metric measurement system - Use rulers to measure lengths to nearest $\frac{1}{2}, \frac{1}{4}$ and $\frac{1}{8}$ of an inch - Analyze data using dot plots (with values to the nearest $1 / 8$ of a unit)	- Measure length and weight in metric units - Convert between units of measurement - Create and analyze dot plots (line plots) with fraction measurements
Money	- Identify pennies, nickels and dimes and know the value of each coin	- Identify value of pennies, nickels, dimes and quarters	- Combination of coins - Problems involving dollars and all coins	- Using money to solve problems	- Using money as a tool or manipulative to solve problems	- Using money as a tool to solve problems involving decimals
Time		- Tell \& write time in hours and half hours - Measure elapsed time to the hour	- Time to the nearest five minutes - Distinguish between a.m. \& p.m. - Elapsed time to hour or half hour	- Tell time to the nearest minute - Estimate relative time - Elapsed time to hour, half hour \& quarter hour	- Intervals of time - Elapsed time to the nearest minute	- Solving problems involving time

$3^{\text {rd }}$ Grade

The nine standards listed below are the key content competencies students will be expected to master in third grade. Additional clarity and details are provided through the classroom-level learning objectives and evidence of student learning details for each grade-level standard found on subsequent pages of this document. As teachers are planning instruction and assessing mastery of the content at the grade level, the focus should remain on the key competencies listed in the table below.

THIRD GRADE STANDARDS

3.MP: Display perseverance and patience in problem-solving. Demonstrate skills and strategies needed to succeed in mathematics, including critical thinking, reasoning, and effective collaboration and expression. Seek help and apply feedback. Set and monitor goals.
3.NR.1: Use place value reasoning to represent, read, write, and compare numerical values up to 10,000 and round whole numbers up to 1,000 .
3.PAR.2: Use part-whole strategies to represent and solve real-life problems involving addition and subtraction with whole numbers up to 10,000 .
3.PAR.3: Use part-whole strategies to solve real-life, mathematical problems involving multiplication and division with whole numbers within 100.
3.NR.4: Represent fractions with denominators of $2,3,4,6$ and 8 in multiple ways within a framework using visual models.
3.MDR.5: Solve real-life, mathematical problems involving length, liquid volume, mass, and time and analyze graphical displays of data to answer relevant questions.
3.GSR.6: Identify the attributes of polygons, including parallel segments, perpendicular segments, right angles, and symmetry.
3.GSR.7: Identify area as a measurable attribute of rectangles and determine the area of a rectangle presented in real-life, mathematical problems.
3.GSR.8: Determine the perimeter of a polygon presented in real-life, mathematical problems.

Georgia's K-12 Mathematics Standards - 2021

$3^{\text {rd }}$ Grade

NUMERICAL REASONING - base ten numerals and place value up to 10,000, and rounding up to 1,000					
3.NR.1: Use place value reasoning to represent, read, write, and compare numerical values up to 10,000 and round whole numbers up to 1,000.					
	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)			
3.NR.1.1	Read and write multi-digit whole numbers up to 10,000 using base-ten numerals and expanded form.	Strategies and Methods - Students should (break apart) - Examples of dif within the Com found in the ap	d be able to compose (umbers in various way ferent strategies and putational Strategies f pendices.	combine) and decompose epresentations can be found Whole Numbers document	Examples - 15 tens +13 ones $=163$ OR 16 tens +3 ones - $568=500+50+18$ OR $500+60+8$
3.NR.1.2	Use place value reasoning to compare multi-digit numbers up to 10,000 , using $>,=$, and < symbols to record the results of comparisons.	Strategies and Methods - Students should - Students should They should be record compar	d be able to compare d also create bar graph able to analyze the da son in context.	hole numbers up to 10,000 . and dot plots to represent nu a presented in dot plots and b	ical data when answering a statistical investigative question. raphs to compare multi-digit numbers using the symbols to
3.NR.1.3	Use place value understanding to round whole numbers up to 1000 to the nearest 10 or 100.	Relevance and Application - Students should be able to use place value understanding to round whole numbers for an authentic purpose within authentic situations.	Strategies and Methods - Students should locate numbers on a number line to determine the nearest multiple of 10 or 100.	Fundamentals - Students should be given opportunities to build understanding by exploring the concept within 100 first and then progressing to applying the same mathematical thinking within 1000.	Example - On a road trip, there is a gas station at the 700 -mile mark and the 800 -mile mark. You have about 50 miles left in the tank when you hit the 765 -mile mark, which gas station is the closest for you to go to?

PATTERNING \& ALGEBRAIC REASONING - fluency, addition and subtraction within 10,000, multiplication and division within 100, equality, properties of operations					
3.PAR.2: Use part-whole strategies to represent and solve real-life problems involving addition and subtraction with whole numbers within 10,000.					
	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)			
3.PAR.2.1	Fluently add and subtract within 1000 to solve problems.	Terminology - Fluently/Fluency - To achieve fluency, students should be able to choose flexibly among methods and strategies to solve mathematical problems accurately and efficiently. - Dot plots and line plots are similar tools with different symbols used to display the data points. They can be used interchangeably.	Relevance and Application - Students should be able to use numerical reasoning to solve mathematical problems relevant to everyday life involving all problem types. Click here for a listing of all problem types. - Relevant problems can include word problems that are meaningful to a student's real environment. It is important for the problems presented to be relevant and interesting for the learners to pique their natural, intellectual curiosity.	Strategies and Methods - see special note in appendix - Strategies may be based on place value, properties of operations, and/or the relationship between addition and subtraction. - Some problems should include data obtained from measurements of objects. This will allow students to apply their problemsolving abilities to reading bar graphs, pictographs, and dot plots as they solve problems within 1000.	Age/Developmentally Appropriate - Students should be allowed to choose an appropriate strategy to demonstrate fluency. - Finding and using key words is not an appropriate strategy.
3.PAR.2.2	Apply part-whole strategies, properties of operations and place value understanding, to solve problems involving addition and subtraction within 10,000. Represent these problems using equations with a letter standing for the unknown quantity. Justify solutions.	Fundamentals - Students should add numbers within 10,0 mathematical proble generalizable proced place value and prop - The focus of this lear reasoning and sense-	and subtract multi-digit whole 0 to solve authentic, ms using efficient and ures, based on knowledge of erties of operations. ning objective is mathematical making.	Strategies and Methods - - Students shoul and representa whole reasonin - Students should use.	see special note in appendix be given opportunities to use variety of models ions when extending their understanding of partstrategies. be given the choice of which strategy they can

3.PAR.3: Use part-whole strategies to solve real-life, mathematical problems involving multiplication and division with whole numbers within 100.					
Expectations		Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)			
3.PAR.3.1	Describe, extend, and create numeric patterns related to multiplication. Make predictions related to the patterns.	Age/Developmentally Appropriate - Identifying patterns can help stud facts. - Multiplication tables may be used relationships. - A student looking at a multiplicati even numbers ($2,4,6$, and 8) are column increase by the same amo double the multiples of 3 ; the multip and a vertical line due to the com - Patterns may include exposure to work in $2^{\text {nd }}$ grade.	nts derive o help n table ways nt (skip iples of utative ven an	ive and automatize multiplication students discover patterns and may discover that multiples of even; the products in each row and p counting); the multiples of 6 are any number fall on a horizontal property, etc. odd extending from previous	Example - A student highlighting the multiples of 9 on a hundreds chart might notice 2×9 is 2 away from $20,3 \times 9$ is 3 away from 30 , and so forth.
3.PAR.3.2	Represent single digit multiplication and division facts using a variety of strategies. Explain the relationship between multiplication and division.	Fundamentals - Students should solve multiplication problems including single-digit factors and division problems including single-digit divisors and quotients.	Strat note -	egies and Methods - see special in appendix Multiplication strategies may include repeated addition, equalsized groups, arrays, area models, equal jumps on a number line and skip counting. Multiplication tables may be used to help students discover patterns and relationships. Division strategies may include repeated subtraction, equal sharing, and forming equal groups. Examples of different strategies and representations can be found within the Computational Strategies for Whole Numbers document found in the appendices.	Age/Developmentally Appropriate - Students should be able to use numerical reasoning to learn multiplication and division facts through playing games and solving authentic, mathematical problems. - Fluency does not lend itself to timed tests or speed. Students should be given opportunities to choose flexibly among methods and strategies to solve mathematical problems accurately and efficiently. - Fluency can be assessed in different ways.
3.PAR.3.3	Apply properties of operations (i.e., commutative property, associative property, distributive property) to multiply and divide within 100.	Age/Developmentally Appropriate - These properties should be sense routines. - Students at this grade level properties. - Third grade students do not properties.	sed org re not need to	ganically within the daily number expected to identify the specific know the formal names for these	Examples - 7×3 is known, then 3×7 is also known (Commutative Property) - $3 \times 5 \times 2$ can be found by $3 \times 5=15$, then $15 \times 2=30$, or $5 \times 2=10$, then $3 \times 10=30$ (Associative Property) - Knowing $8 \times 5=40$ and $8 \times 2=16,8 \times 7$ can be found as the sum of these partial products: $8 \times(5+2)=(8 \times$ 5) $+(8 \times 2)=40+16=56$ (Distributive Property)
3.PAR.3.4	Use the meaning of the equal sign to determine whether expressions involving	Age/Developmentally Appropriate - Students build upon their p knowledge of equality to ex relational understanding.	d to	Examples - Ten teams of 8 students sig drop out. Write an equati at the tournament.	d up for a volleyball tournament. One of the teams had to with two expressions that show how many students will be

	addition, subtraction, and multiplication are equivalent.	- Possible solutions: 9 groups of 8 is the same as 10 groups of 8 minus one group of 8 or $9 \times 8=(10 \times 8)-8$, or $9 \times 8=8+8+8+8+8+8+8+8+8$ Students may also use picture drawings or models to justify their thinking.							
3.PAR.3.5	Use place value reasoning and properties of operations to multiply one-digit whole numbers by multiples of 10 , in the range 10-90.	Age/Developmentally Appropriate - Students should be given an opportunity to explore that when a number is 10 times larger than another number, this does not come from adding zero. - Students should understand that adding zero does not change the overall quantity. - Students should explore the patterns of multiplying by ten and notice how the magnitude of the number changes. Exploring the pattern, students should uncover as numbers are multiplied by a multiple of 10 , the digit shifts left, making the value ten times more with each shift.						Example	6 times 20 is 120 because 6 groups of 20 is 120; or $6 \times 20=6 \times(10 \times$ 2) $=(6 \times 10) \times 2=60 \times 2=$ 120.
3.PAR.3.6	Solve practical, relevant problems involving multiplication and division within 100 using part-whole strategies, visual representations, and/or concrete models.	Fundamentals - Students should be able to solve practical, realistic division problems including "how many in each group" and "how many groups" using efficient and flexible strategies.	Age/Developm Appropriate - Multiplica and divisi within 100 multiplic division of whole nu with who number and with or dividend range 0-1 $39 \div 3=13$.	tally on means on and two bers swers, roduct in the (e.g.,	Relevance and Application - Relevant proble can include wor problems that a meaningful to a student's real environment. It important for th problems prese to be relevant a interesting for t learners to piqu their natural, intellectual curiosity.		Strategies and Methods see special note in appendix - Some problems should include creating and reading bar graphs, pictographs, and dot plots. Data could include values obtained from measurements of objects.	Example	The store had video games on sale for $\$ 15$ each. If you bought 4 games, how much would you spend?
3.PAR.3.7	Use multiplication and division to solve problems involving whole numbers to 100. Represent these problems using equations with a letter standing for the unknown quantity. Justify solutions.	Fundamentals - Students should strategies to so authentic, mat problems. - Students should problems using variable standi unknown quan their answers. letters used to unknown. - Students should reasoning to ass reasonablenes	use a variety of ve multi-step ematical represent equations with a for the ty and justify Variables can be epresent the use numerical ess the of answers.	Age/ Appr	evelopmentally riate his is limited to roblems posed with whole numbers and aving whole-number nswers. Situations nvolving money hould not include ecimal numbers.		tegies and Methods - see ial note in appendix Some problems should include creating and reading bar graphs, pictographs, and dot plots. Data could include values obtained from measurements of objects.	Example	At the movies, tickets cost $\$ 11$ each, popcorn costs $\$ 7$ each, and drinks costs \$4 each. If I have $\$ 35$, do I have enough to purchase 2 tickets, 1 popcorn, and 2 drinks?

MEASUREMENT \& DATA REASONING - elapsed time, liquid volume, mass, lengths in half and fourth of an inch, data						
3.MDR.5: Solve real-life, mathematical problems involving length, liquid volume, mass, and time.						
	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)				
3.MDR.5.1	Ask questions and answer them based on gathered information, observations, and appropriate graphical displays to solve problems relevant to everyday life.	Fundamentals - Relevant problems can include word problems that are meaningful to a student's real environment. It is important for the problems presented to be relevant and interesting for the learners to pique their natural, intellectual curiosity. - Questions should be student generated.				
3.MDR.5.2	Tell and write time to the nearest minute and estimate time to the nearest fifteen minutes (quarter hour) from the analysis of an analog clock.	Fundamentals - Students should be given opportunities to determine relative time and predict time to the nearest fifteen minutes using only the hour hand of an analog clock.				
3.MDR.5.3	Solve meaningful problems involving elapsed time, including intervals of time to the hour, half hour, and quarter hour where the times presented are only on the hour, half hour, or quarter hour within a.m. or p.m. only.	Age/Developmentally Appropriate - Problems should include am/pm, start unknown, end unknown, and change unknown and addition/subtraction of time intervals. - Students should be given opportunities to use number lines to find unknowns. - Relevant problems can include word problems that are meaningful to a student's real environment. It is important for the problems presented to be relevant and interesting for the learners to pique their natural, intellectual curiosity.			Examples - The bus comes at 7:00 a.m. It takes me 15 minutes to eat breakfast and 30 minutes to get ready. What time do I need to wake up? (e.g., start unknown) - I went to the movies at 3:15 p.m. The movie lasted 1 hour 45 minutes. What time did the movie end? (e.g., end unknown) - After school I went to the park at 2:30 p.m. and left to go home at 3:45 p.m. How long was I at the park? (e.g., change unknown)	
3.MDR.5.4	Use rulers to measure lengths in halves and fourths (quarters) of an inch and a whole inch.	Age/Developmentally Appropriate - Students should use rulers marked with halves and fourths (quarters) of an inch. - Students must have prior knowledge of fractions on a number line.				
3.MDR.5.5	Estimate and measure liquid volumes, lengths and masses of objects using customary units. Solve problems involving mass, length, and volume given in the same unit, and reason about the relative sizes of measurement units within the customary system.	Fundamentals - Students should have an opportunity to compare capacity by filling one container with something and then pouring this amount into the comparison container. - Students should have opportunities to physically measure objects.	Age/Developmentally Appropriate - Conversions are not expected in this grade level. The focus here should be on helping learners see the equivalence between quantities. - Students extend understanding of measuring length in inches to measuring in feet and yards.		ology he terminology below is used clarify expectations for the aching professional. udents are not required to e this terminology when gaging with the learning jective. - Customary measurement units include weight (oz., lbs., tons) capacity (fl. oz, cups, pints, quarts, gallons), length (in., ft., yds., miles).	Example - Students should be able to record measurement equivalents in a twocolumn table.

GEOMETRIC \& SPATIAL REASONING - polygons, parallel line segments, perpendicular line segments, right angles, lines of symmetry, area, perimeter					
	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)			
3.GSR.6.1	Identify perpendicular line segments, parallel line segments, and right angles, identify these in polygons, and solve problems involving parallel line segments, perpendicular line segments, and right angles.	Terminology - Two lines are perpendicula angle formed at their inte a right angle (angles that square corner). - Two lines are parallel if th the same plane and neve		opmentally should be a focus on vestigation of rilaterals, specifically, ther polygons should explored.	Example - Given a variety of shapes, identify whether each includes parallel line segments, perpendicular line segments, and right angles.
3.GSR.6.2	Classify, compare, and contrast polygons, with a focus on quadrilaterals, based on properties. Analyze specific $3-$ dimensional figures to identify and describe quadrilaterals as faces of these figures.	Fundamentals - Students should explore, compare, and contrast polygons based on properties. - There should be a focus on the investigation of quadrilaterals, specifically, but other polygons should also be explored. - Students should also be able to identify and name precise quadrilaterals as faces of specific 3dimensional figures.	Age/Developmentally Appropriate - This learning objective does not require students to create a hierarchy.	Strategies and Methods - Quadrilaterals should include square, rectangle, rhombus, parallelogram, trapezoid, and kite.	Terminology - Properties may include angles, side lengths, symmetry, congruence, and the presence or absence of parallel or perpendicular lines. - Students should be able to identify types of angles, including acute, obtuse, and right. - Right angle - An angle with a square corner. - Acute angle - An angle smaller than a right angle. - Obtuse angle - An angle larger than a right angle. - In Georgia resources and assessments, the inclusive definitions for the classification of shapes are used. Therefore, trapezoids are defined using the inclusive definition: at least one pair of parallel sides.
3.GSR.6.3	Identify lines of symmetry in polygons.	Fundamentals - There should be a focus on the investigation of quadrilaterals, specifically, but other polygons should also be explored.	Age/Development - Students symmetry materials, paper fold	lly Appropriate should investigate using a variety of such as miras and ling.	Terminology - Quadrilaterals are polygons with four sides and four angles.

	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)		
3.GSR.7.1	Investigate area by covering the space of rectangles presented in realistic situations using multiple copies of the same unit, with no	Age/Developmentally Appropriate - The expectation at this grade level is for students to explore areas of rectangles only.	Strategies and Methods - Students should use numerical and spatial reasoning to determine the area of rectangles presented in realistic, mathematical problems.	Example - Students can determine the area of the top of their desk or other rectangle outlined by tape on the desk by covering it using non-standard units,

	gaps or overlaps, and determine the total area (total number of units that covered the space).						such as index cards, sticky notes, tiles, etc.
3.GSR.7.2	Determine the area of rectangles (or shapes composed of rectangles) presented in relevant problems by tiling and counting.		Age/Developmentally Appropriate - The expectation at this grade level is for students to explore areas of rectangles by tiling and counting to develop the concept of area as the space (number of tiles) needed to cover the shape.		Strategies and Methods - Students should use numerical and spatial reasoning to determine the area of rectangles presented in realistic, mathematical problems by counting or tiling. - Relevant problems can include word problems that are meaningful to a student's real environment. It is important for the problems presented to be relevant and interesting for the learners to pique their natural, intellectual curiosity.		Example - A laptop cover is being made with square vinyl stickers. There are four rows of stickers. There are 9 stickers in each row. How many square stickers were used to create the laptop cover?
3.GSR.7.3	Discover and explain how area can be found by multiplying the dimensions of a rectangle.		Age/Developmentally Appropriate - Dimensions of the rectangle could be limited to values up to 10 for each dimension. Students could explore higher values for dimensions as they show readiness.		damentals Students should have multiple opportunities to connect area to the investigations of multiplication using arrays.	Terminology - The dimensions of a rectangle can be referred to as length and width OR base and height. - A square with side length 1 unit, called "a unit square, is said to have "one square unit" of area, and can be used to measure area (e.g. square cm , square m , square in, square ft).	Example - The area of a rectangle with wholenumber side lengths a and $b+c$ is the sum of $a \times b$ and $a \times c ; 4 \times 7$ is the same as $4 \times(2+5)$ and is the sum of 4 $\times 2$ and 4×5. - In a rectangular garden, you have four rows of peanut plants. There are 9 peanut plants in each row. How many peanut plants are there in the garden?
3.GSR.8: Determine the perimeter of a polygon presented in real-life, mathematical problems.							
	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)					
3.GSR.8.1	Determine the perimeter of a polygon and explain that the perimeter represents the distance around a polygon. Solve problems involving perimeters of polygons.	Age/Developmentally Appropriate - At this grade level, students should explore perimeters of polygons with up to ten sides.		Fundamentals - Students should be given opportunities to develop a conceptual understanding of perimeter of all types of polygons including regular and irregular. - Students should investigate perimeters of polygons with a focus on quadrilaterals. - Students should be able to find the perimeter given the side lengths.		Terminology - The focus of this learning objective should be on developing the conceptual understanding of perimeter, rather than on terminology. - A polygon is a closed figure with at least three straight sides and angles; a polygon is regular only when all sides are equal and all	Examples - Your neighbor has 24 feet of fencing and wants you to help her build a rectangular pen for her dog. What are some possible dimensions for the dog pen? Which pen would you recommend and why? - A square pizza box has a perimeter of 32 inches, what are side lengths of the box? - If a stop sign has a side length of 4 inches, what would be its perimeter?

ESSENTIAL INSTRUCTIONAL GUIDANCE

MATHEMATICAL PRACTICES

The Mathematical Practices describe the reasoning behaviors students should develop as they build an understanding of mathematics - the "habits of mind" that help students become mathematical thinkers. There are eight standards, which apply to all grade levels and conceptual categories.

These mathematical practices describe how students should engage with the mathematics content for their grade level. Developing these habits of mind builds students' capacity to become mathematical thinkers. These practices can be applied individually or together in mathematics lessons, and no particular order is required. In well-designed lessons, there are often two or more Mathematical Practices present.

MATHEMATICAL PRACTICES

MP: Display perseverance and patience in problem-solving. Demonstrate skills and strategies needed to succeed in mathematics, including critical thinking, reasoning, and effective collaboration and expression. Seek help and apply feedback. Set and monitor goals. Code Expectation	
MP. 1	Make sense of problems and persevere in solving them.
MP. 2	Reason abstractly and quantitatively.
MP. 3	Construct viable arguments and critique the reasoning of others.
MP.4	Model with mathematics.
MP. 5	Use appropriate tools strategically.
MP.6	Look for and make use of structure.
MP. 7	Look for and express regularity in repeated reasoning.
MP.8	

MATHEMATICAL MODELING

Teaching students to model with mathematics is engaging, builds confidence and competence, and gives students the opportunity to collaborate and make sense of the world around them, the main reason for doing mathematics. For these reasons, mathematical modeling should be incorporated at every level of a student's education. This is important not only to develop a deep understanding of mathematics itself, but more importantly to give students the tools they need to make sense of the world around them. Students who engage in mathematical modeling will not only be prepared for their chosen career but will also learn to make informed daily life decisions based on data and the models they create.

The diagram below is a mathematical modeling framework depicting a cycle of how students can engage in mathematical modeling when solving a realistic problem or task.

A Mathematical Modeling Framework

Explore \& describe reallife, mathematical situations or problems.

> Evaluate the model and interpret solutions generated from other models. Draw and validate conclusions.

Critical thinking Communication Collaboration Creative Problem Solving

Gather information, make assumptions, and define variables related to the problem.

FRAMEWORK FOR STATISTICAL REASONING

Statistical reasoning is important for learners to engage as citizens and professionals in a world that continues to change and evolve. Humans are naturally curious beings and statistics is a language that can be used to better answer questions about personal choices and/or make sense of naturally occurring phenomena. Statistics is a way to ask questions, explore, and make sense of the world around us.

The Framework for Statistical Reasoning should be used in all grade levels and courses to guide learners through the sense-making process, ultimately leading to the goal of statistical literacy in all grade levels and courses. Reasoning with statistics provides a context that necessitates the learning and application of a variety of mathematical concepts.

FIGURE 1: GEORGIA FRAMEWORK FOR STATISTICAL REASONING

The following four-step statistical problem-solving process can be used throughout each grade level and course to help learners develop a solid foundation in statistical reasoning and literacy:
I. Formulate Statistical Investigative Questions

Ask questions that anticipate variability.
II. Collect \& Consider the Data

Ensure that data collection designs acknowledge variability.
III. Analyze the Data

Make sense of data and communicate what the data mean using pictures (graphs) and words. Give an accounting of variability, as appropriate.

IV. Interpret the Results

Answer statistical investigative questions based on the collected data.
$\mathbf{2}^{\text {nd }}$ Grade: Create statistical investigative questions that can be answered using data. Collect, analyze, and interpret categorical data presented as picture graphs and bar graphs (with singleunit scales) with up to four categories from real situations to answer questions.

Ask	Collect	Analyze	Interpret
Create a statistical investigative question that can be answered by gathering, representing, and interpreting data.	Determine strategies for collecting and organizing data to answer a statistical investigative question.	Create a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Analyze the information by asking and answering questions about the data.	Interpret categorical data to answer the statistical investigative question created.

Instructional Supports

- Expectations in this grade level should be taught throughout the year and applied contextually to the current expectation and real events.
- Students should formulate a statistical investigative question to explore an authentic situation in their classroom.
- The data collection can occur through the use of surveys and scientific observations. Tables and tally marks can be used to organize data.
- Pictographs and bar graphs used at this grade level should represent a data set with no more than four categories.
- Students should solve simple join, separate, and compare problems using information presented.
- Students should use addition and subtraction to create and obtain information from tables, pictographs, bar graphs, and tally charts.
$3^{\text {rd }}$ Grade: Create statistical investigative questions that can be answered using data. Collect, analyze, and interpret numerical and categorical data involving whole number values obtained from real situations to answer questions.

Ask	Collect	Analyze	Interpret
Create a statistical	Determine strategies for		
investigative question			
that can be answered			
collecting and organizing			
numerical data and			
authentic situations.	Create pictographs, bar graphs, and dot plots with categorical data involving whole number values to answer a statistical investigative question.	Interpret categorical and numerical data to appropriate scales, using, labels, and units within the graphical display.	inver the statistical created.

Instructional Supports

- Expectations in this grade level should be taught throughout the year and applied contextually to the current expectation and actual life events.
- In previous grade levels, students analyzed categorical data. In third grade, this is extended to include numerical data analysis.
- Students should formulate a statistical investigative question to explore a real situation in their classroom.
- Students should be provided with learning experiences to collect and analyze both numerical data and categorical data.
- Some problems should include reading bar graphs, pictographs, and dot plots, as well as customary measurements. Dot plots and line plots can be used interchangeably. Dot plots should be used for numerical data representation on a number line.
- Developing strategies for collecting data include students collaborating to determine ways to collect data. Data can be gathered from a variety of sources to answer the statistical investigative question posed. Data sets for categorical data may include several categories.
- The scales of the pictographs, bar graphs, and dot plots should depend on the data collected. On a pictograph, one symbol may stand for a value greater than 1 to allow students to apply their understanding of single digit multiplication and division facts.
- Students should use a ruler that is marked at halves and fourths only to create an evenly spaced number line for the dot plot.
- Numerical data - data that can be expressed in numbers rather than natural language. An example of numerical data that could be collected is the number of people who attended the movie theater over the course of a month.
- Categorical data - a type of data used to group information with similar characteristics. Examples of categorical data that could be collected might be marital status, favorite sport, or favorite type of movie.

COMPUTATIONAL STRATEGIES FOR WHOLE NUMBERS

Georgia Department of Education

Mathematics Place-Value Strategies and US Traditional Algorithms

Specific mathematics strategies for teaching and learning are not mandated by the Georgia Department of Education or assessed on state or federally mandated tests. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and-makes sense to them. It is critical that teachers and parents remain partners to help each child grow to become a mathematically literate citizen. These standards preserve and affirm local control and flexibility.

In mathematics, the emphasis is on the reasoning and thinking about the quantities within mathematical contexts. Algorithms, tape diagrams (bar models), and number line representations are a few examples of ways that students communicate their strategic thinking in a written form.

It is important to note that the examples of strategies provided in the tables are not all inclusive. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and makes sense to them.

Subtraction Example: 2145-178

Number Line Representation:

It is important to note that the examples of strategies provided in the tables are not all inclusive. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and makes sense to them.

Multiplication Example: 25×24		
US Traditional Algorithm: $\begin{array}{r} 1_{2} \\ 25 \\ \times \quad 24 \\ \hline \\ \hline \quad 100 \\ +\quad 500 \\ \hline 600 \end{array}$	Description: As students make sense of and use multiplication strategies and algorithms, it is important for them to demonstrate a deep understanding of the relationship between the quantities presented in the mathematics number sentence and to attend to precision in their explanations. Students are encouraged to use strategies such as partial products, friendly numbers, and a combination of known facts to determine solutions to new problems. It is also important for students to maintain the ability to choose which part-whole strategy is best to communicate their mathematical thinking. Flexibility in thinking is key!	Place Value Algorithm: $\begin{array}{rrl} & 25 \\ \times & 24 \\ \hline & 400 & \\ \hline & (20 \times 20) \\ + & 100 & (20 \times 5) \\ + & 80 & (4 \times 20) \\ + & 20 & (4 \times 5) \\ \cline { 1 - 2 } & 600 & \end{array}$
Area Representation (Part	Products): $(5 \times 4)+(5 \times 20)+(20 \times 4)+(20 \times 20)=(25 \times 24)$	

It is important to note that the examples of strategies provided in the tables are not all inclusive. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and makes sense to them.

[^0]: Units contain tasks that depend upon the concepts addressed in earlier units. Mathematical standards are interwoven and should be addressed throughout the year in as many different units and tasks

