MATHEMATICS
6th Grade Mathematics Teaching \& Learning Framework

Semester 1				Semester 2				
Unit 1 4 weeks	Unit 2 6 weeks	Unit 3 4 weeks	Unit 4 4 weeks	Unit 5 6 weeks	Unit 6 4 weeks	Unit 7 3 weeks	Unit 8 2 weeks	Unit 9 3 weeks
Exploring Reallife Phenomena through Statistics 6.NR. 2	Making Relevant Connections through Number System Fluency 6.NR. 1 6.NR. 2	Investigating Rate, Ratio and Proportional Reasoning 6.NR. 4	Building Conceptual Understanding of Expressions 6.PAR. 6	Exploring Real-life Phenomena through One-Step Equations and Inequalities 6.PAR. 7	Exploring Area and Volume 6.GSR. 5	Rational Exploration: Numbers and their Opposites 6.NR.2 6.NR.3	Graphing Rational Numbers 6.PAR. 8	Culminating Capstone Unit
6.NR.2.1 (Mean) 6.NR.2.2 (Data Display) 6.NR.2.3 (Distribution) 6.NR.2.4 (Measures of center \& variability) 6.NR.2.5 (Shape of data) 6.NR.2.6 (Impact of data points)	6.PAR.6.2 (GCF \& LCM) 6.NR.1.1 (+/- Fractions) 6.NR.1.2 (x/-Fractions) 6.NR.1.3 (Operations with decimals) 6.NR.2.1 (Mean) 6.NR.2.3 (Distribution) 6.NR.2.4 (Measures of center \& variability)	6.NR.4.1 (Ratios) 6.NR.4.2 (Tables, graph ratios) 6.NR.4.3 (Proportions) 6.NR.4.4 (Rates/Unit Rates) 6.NR.4.5 (Unit Rates with pricing/constant speed) 6.NR.4.6 (Percents) 6.NR.4.7 (Measurement conversions)	6.PAR.6.1 (Exponent expressions) 6.PAR.6.2 (GCF \& LCM) 6.PAR.6.3 (Expressions) 6.PAR.6.4 (Evaluate expressions) 6.PAR.6.5 (Equivalent expressions)	6.PAR.7.1 (Solve 1-step equations and inequalities by substitution) 6.PAR.7.2 (Write 1-step equations and inequalities) 6.PAR.7.3 (Solve equations with nonnegative rational numbers) 6.PAR.7.4 (Recognize \& generate inequalities and represent solutions on number line)	6.GSR.5.1 (Explore \& find area of geometric figures by composing / decomposing) 6.GSR.5.2 (Find surface area of 3D figures using nets) 6.GSR.5.3 (Calculate volume of right rectangular prisms with fractional edges using $V=b h$)	6NR.3.1 (Identify \& compare integers) 6.NR.3.2 (Order \& plot integers) 6.NR.3.3 (Opposites) 6.NR.3.4 (Statements of order / compare rational numbers) 6.NR.3.5 (Absolute value) 6.NR.3.6 (Comparison of absolute value vs. statements of order) 6.NR.2.3 (Distribution) 6.NR.2.4 (MAD)	6.PAR.8.1 (Locate \& position rational \#s on horizontal \& vertical \# lines \& coordinate plane) 6.PAR.8.2 (Coordinates \& quadrants) 6.PAR.8.3 (Solve by graphing on coordinate plane / use Ab Value) 6.PAR.8.4 (Draw polygons on coordinate plane)	All standards.

[^0] $\overline{\text { Georgia Department of Education }}$

GEORGIA'S K-12 MATHEMATICS STANDARDS 2021

Governor Kemp and Superintendent Woods are committed to the best set of academic standards for Georgia's students - laying a strong foundation of the fundamentals, ensuring age- and developmentally appropriate concepts and content, providing instructional supports to set our teachers up for success, protecting and affirming local control and flexibility regarding the use of mathematical strategies and methods, and preparing students for life. These Georgia-owned and Georgia-grown standards leverage the insight, expertise, experience, and efforts of thousands of Georgians to deliver the very best educational experience for Georgia's 1.7 million students.

In August 2019, Governor Brian Kemp and State School Superintendent Richard Woods announced the review and revision of Georgia's K-12 mathematics standards. Georgians have been engaged throughout the standards review and revision process through public surveys and working groups. In addition to educator working groups, surveys, and the Academic Review Committee, Governor Kemp announced a new way for Georgians to provide input on the standards: the Citizens Review Committee, a group composed of students, parents, business and community leaders, and concerned citizens from across the state. Together, these efforts were undertaken to ensure Georgians will have buy-in and faith in the process and product.

The Citizens Review Committee provided a charge and recommendations to the working groups of educators who came together to craft the standards, ensuring the result would be usable and friendly for parents and students in addition to educators. More than 14,000 Georgians participated in the state's public survey from July through September 2019, providing additional feedback for educators to review. The process of writing the standards involved more than 200 mathematics educators -- from beginning to veteran teachers, representing rural, suburban, and metro areas of our state.

Grade-level teams of mathematics teachers engaged in deep discussions; analyzed stakeholder feedback; reviewed every single standard, concept, and skill; and provided draft recommendations. To support fellow mathematics teachers, they also developed learning progressions to show when key concepts were introduced and how they progressed across grade levels, provided examples, and defined age/developmentally appropriate expectations.

These teachers reinforced that strategies and methods for solving mathematical problems are classroom decisions -- not state decisions -- and should be made with the best interest of the individual child in mind. These recommended revisions have been shared with the Academic Review Committee, which is composed of postsecondary partners, age/development experts, and business leaders, as well as the Citizens Review Committee, for final input and feedback.

Based on the recommendation of Superintendent Woods, the State Board of Education will vote to post the draft K-12 mathematics standards for public comment. Following public comment, the standards will be recommended for adoption, followed by a year of teacher training and professional learning prior to implementation.

Use of Mathematical Strategies and Methods \& Affirming Local Control

These standards preserve and affirm local control and flexibility regarding the use of the "standard algorithm" and other mathematical strategies and methods. Students have the right to use any strategy that produces accurate computations, makes sense, and is appropriate for their level of understanding.

Therefore, the wording of these standards allows for the "standard algorithm" as well as other cognitive strategies deemed developmentally appropriate for each grade level. Revised state tests will not measure the students' use of specific mathematical strategies and methods, only whether students understand the key mathematical skills and concepts in these standards.

Teachers are afforded the flexibility to support the individual needs of their students. It is critical that teachers and parents remain partners to help each child grow to become a mathematically literate citizen.

Georgia's K-12 Mathematics Standards - 2021
Mathematics Big Ideas and Learning Progressions, 6-8

Mathematics Big Ideas, 6-8

5	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	HS Algebra: Concepts \& Connections	HS Connections
MATHEMATICAL PRACTICES \& MODELING					
DATA \& STATISTICAL REASONING					
NUMERICAL REASONING (NR)					
PATTERNING \& ALGEBRAIC REASONING (PAR)					
GEOMETRIC \& SPATIAL REASONING (GSR)					
	PROBABILITY REASONING (PR)	PROBABILISTIC REASONING (PR)			

6-8 MATHEMATICS: LEARNING PROGRESSIONS

Key Concepts	5	6	7	8	HS Algebra: Concepts \& Connections	HS Geometry: Concepts \& Connections
NUMERICAL REASONING						
Numbers (rational numbers and irrational numbers)	- Multi-digit whole numbers - Fractions with unlike denominators - Fractions greater than 1 - Decimal numbers to thousandths - Powers of 10 to 10^{3}	- Rational numbers as a concept \circ Integers \circ Fractions \circ Decimal numbers	- All rational numbers - Simple probability	- All rational numbers - Scientific notation - Numerical expressions with integer exponents - Use appropriate counting strategies to approximate rational and irrational numbers (radicals) on a number line	- All rational numbers - Operations with radicals	- All numbers in The Real Number System
Computational Fluency	- Add \& subtract fractions with unlike denominators - Add and subtract decimal numbers to the hundredths place - Multiply \& divide multidigit whole numbers - Multiply fractions and whole numbers - Divide unit fractions and whole numbers - Reason about multiplying by a fraction >, <, or = 1	- All operations with whole numbers, fractions, and decimal numbers - Write \& evaluate numerical expressions - Convert fractions with denominators of $2,4,5$ and 10 to the decimal notation	- Operations with rational numbers - Rational numbers - Convert fractions with all denominators to decimal numbers	- Operations with scientific notation - Scientific notation in real situations seen in everyday life - Expressions with integer exponents	- Operations with real numbers (rational and irrational) - Multiplication of irrational numbers	
Comparisons	- Decimal fractions to thousandths place - Fractions greater than 1	- Integers - Unit rates - Ratios - Numerical data distributions - Measures of variation - Absolute value - Display and analyze categorical and quantitative (numerical) data	- Rational numbers - Probabilities - Random sampling	- Rational and irrational numbers (radicals) - Compare proportional relationships presented in different ways	- Rate of change (slope) - Intercept - Distributions of two or more data sets	

6-8 MATHEMATICS: LEARNING PROGRESSIONS

Key Concepts	5	6	7	8	HS Algebra: Connections	HS Geometry: Concepts \& Connections
PATTERNING \& ALGEBRAIC REASONING						
Patterns	- Generate two numerical patterns from a given rule - Identify relationships using a table	- Greatest common factor \& least common multiple	- Constant of proportionality	- Integer exponents - Perfect squares and perfect cubes	- Arithmetic sequences - Geometric sequences	
Expressions	Numerical Reasoning - Simple numerical expressions involving whole numbers with or without grouping symbols - Express fractions as division problems	- Write, analyze, and evaluate numerical and algebraic expressions - Identify, generate, and evaluate algebraic expressions - Identify like terms in an algebraic expression	- Add, subtract, factor \& expand linear expressions - Rewrite expressions - Fluency with combining like terms in an algebraic expression - Linear expressions with rational coefficients	- Expressions with integer exponents - Linear expressions - Operations with algebraic expressions	- Exponential expressions - Quadratic expressions	- Expressions of varying degrees - Add, subtract, multiply single variable polynomials - Adding, Subtracting and Multiplying Polynomials - Factoring and expanding polynomials
Variable Equations \& Inequalities		- Write and solve one-step equations \& inequalities	- Construct \& solve multi-step algebraic equations and inequalities	- Analyze and solve linear equations and inequalities	- Exponential equations - Quadratic equations - Equations of parallel and perpendicular lines - Analyze and solve linear inequalities	- Equations involving geometric measurement
Ratios \& Rates		Numerical Reasoning with ratios and rates: - Concept of ratio and rate - Equivalent ratios, percentages, unit rates - Convert within measurement systems	- Compute unit rates associated with ratios of fractions - Determine unit rates	- Interpret unit rate as the slope of a graph	- Convert units and rates given a conversion factor	- Side ratios of similar triangles - Trigonometric ratios
Proportional Relationships			- Use proportional relationships - Solve multi-step ratio and percent problems - Scale drawings of geometric figures - Use similar triangles to explain slope			
Graphing	- Plot order pairs in first quadrant	- Plot order pairs in all four quadrants - Show rational numbers on a number line - Draw polygons on a coordinate grid - Find the side length of a polygon graphed on the coordinate plane (same x - or y - coordinate)	- Proportional relationships	- Linear functions - Comparing linear and non-linear functions - Systems of linear equations (including parallel and perpendicular) - Linear inequalities - Analyze data distributions	- Linear functions with function notation - Exponential functions - Quadratic functions - Systems of linear inequalities	- Equations of circles in standard form

6-8 MATHEMATICS: LEARNING PROGRESSIONS						
Key Concepts	5	6	7	8	HS Algebra: Concepts \& Connections	HS Geometry: Concepts \& Connections
FUNCTIONAL \& GRAPHICAL REASONING						
Function Families				- Linear functions - Line of best fit	- Linear functions with function notation - Parent graphs of function families - Exponential functions - Quadratic functions	- Function notation to represent transformations
GEOMETRIC \& SPATIAL REASONING						
 Properties	- Classify polygons based on geometric properties		- Measure angles using non-standard and standard tools - Write \& solve equations using supplementary, complementary, vertical, and adjacent angles	- Introduction to Pythagorean Theorem and the converse		- Develop and use precise definitions to prove theorems and solve geometric problems - Prove slope criteria for parallel and perpendicular lines - Transform polygons using rotations, reflections, dilations, and translations. - Congruence and transformations - Triangle congruence - Use congruence to prove relationships in geometric figures - Similarity and dilations - Similar triangles - Use similarity to prove relationships in geometric figures - Formal proofs \& theorems about triangles - Trigonometric ratios (Sin, Cos, \& Tan)

6-8 MATHEMATICS: LEARNING PROGRESSIONS						
Key Concepts	5	6	7	8	HS Algebra: Concepts \& Connections	HS Geometry: Concepts \& Connections
GEOMETRIC \& SPATIAL REASONING (cont.)						
Geometric Measurement	- Volume of right rectangular prisms	- Area of triangles, quadrilaterals, and polygons - Surface area - Volume of right rectangular prisms with fractional edge lengths	- Relationship between parts of a circle - Area \& circumference of a circle - Area and surface area of figures decomposed into triangles, quadrilaterals \& circles - Volume of cubes, right prisms \& cylinders	- Pythagorean Theorem to determine distance between two points - Volume of cones, cylinders, and spheres	- Use distance formula, midpoint formula, and slope to calculate perimeter and area of triangles and quadrilaterals	- Volumes of prisms, cones, cylinders, pyramids, and spheres - Approximate volumes of irregular objects - Approximate density of irregular objects
PROBABILITY REASONING						
Probability			- Represent probability - Approximate probability - Develop probability models (uniform \& not uniform) - Find probabilities of simple events			- Categorical data \& two-way frequency tables - Interpret probabilities in context

$6^{\text {th }}$ Grade

The nine standards listed below are the key content competencies students will be expected to master in sixth grade. Additional clarity and details are provided through the classroom-level learning objectives and evidence of student learning details for each grade-level standard found on subsequent pages of this document. As teachers are planning instruction and assessing mastery of the content at the grade level, the focus should remain on the key competencies listed in the table below.

SIXTH GRADE STANDARDS

6.MP: Display perseverance and patience in problem-solving. Demonstrate skills and strategies needed to succeed in mathematics, including critical thinking, reasoning, and effective collaboration and expression. Seek help and apply feedback. Set and monitor goals.
6.NR.1: Solve relevant, mathematical problems involving operations with whole numbers, fractions, and decimal numbers.
6.NR.2: Apply operations with whole numbers, fractions and decimals within relevant applications.
6.NR.3: Solve a variety of problems involving whole numbers and their opposites; model rational numbers on a number line to describe problems presented in relevant, mathematical situations.
6.NR.4: Solve a variety of contextual problems involving ratios, unit rates, equivalent ratios, percentages, and conversions within measurement systems using proportional reasoning.
6.GSR.5: Solve relevant problems involving area, surface area, and volume.
6.PAR.6: Identify, write, evaluate, and interpret numerical and algebraic expressions as mathematical models to explain relevant situations.
6.PAR.7: Write and solve one-step equations and inequalities as mathematical models to explain authentic, realistic situations.
6.PAR.8: Graph rational numbers as points on the coordinate plane to represent and solve contextual, mathematical problems; draw polygons using the coordinates for their vertices and find the length of a side of a polygon.

Georgia's K-12 Mathematics Standards - 2021

$6^{\text {TH }}$ GRADE

NUMERICAL REASONING - multiplication and division of whole numbers and fractions, and all four operations with decimal numbers					
6.NR.1: Solve relevant, mathematical problems involving operations with whole numbers, fractions, and decimal numbers.					
Expectations		Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)			
6.NR.1.1	Fluently add and subtract any combination of fractions to solve problems.	Terminology - Fluently/Fluency Students choose flexibly among methods and strategies to solve mathematical problems accurately and efficiently.	Strategies and Methods - Students should be able to use interpret applicable, mathem fractions. - Students should be given the reasoning strategies while solv - Students may solve problems the flexibility to choose a math allows them to make sense of problems using efficient meth comfortable for and makes se		Developmentally Appropriate - Students should be allowed to choose an appropriate strategy to demonstrate fluency.
6.NR.1.2	Multiply and divide any combination of whole numbers, fractions, and mixed numbers using a student-selected strategy. Interpret products and quotients of fractions and solve word problems.	Strategies and Methods - Students should be able including $2,3,4,5,6,8$, - Students should be able applicable, mathematica - Students can use a variet limited to concrete mode generated strategies, a s based on numerical reas - Students should be given strategies and use writte - Students should use flexi methods to express com reasoning and sense-mak experiences that focus o - Students may solve prob flexibility to choose a ma make sense of and strate methods that are most c them.	utilize fractions with denominators and 12. use numerical reasoning to interpret tuations involving fractions. of strategies, including but not visual fraction models, studentdard algorithm, or other strategies ing to represent and solve problems. e opportunity to apply reasoning methods that make sense to them. , accurate, and efficient written tational thinking based on numerical g developed from learning he numbers as quantities. ms in different ways and have the ematical strategy that allows them to cally solve problems using efficient fortable for and makes sense to	Fundamentals - Students should use their understanding of equivalency to flexibly reason with equivalent fractions based on the context of the problem. Simplifying fractions is not an expectation of this grade level. - Students should be able to use the meanings of fractions, multiplication, division and the inverse relationship between multiplication and division to make sense of multiplying and dividing fractions.	Example - How many $\frac{3}{4}$-cup servings are in $\frac{2}{3}$ of a cup of yogurt?

6.NR.1.3	Perform operations with multi-digit decimal numbers fluently using models and student-selected strategies.	Fundamentals - Fluently/Fluency Students choose flexibly among methods and strategies to solve mathematical problems accurately and efficiently.	Strategies and Methods - Students should be able to use a variety of part-whole strategies to compute efficiently (area model, partial product, partial quotient). - The part-whole strategies used should be flexible and extend from previous computation strategies and future work with computation. - Students should use models and student-selected strategies as an efficient written method of demonstrating place value understanding for each operation (addition, subtraction, multiplication, and division). - Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and makes sense to them.			Terminology - Decimal number - a number whose whole number part and fractional part are separated by a decimal point.
6.NR.2: Apply operations with whole numbers, fractions and decimals within relevant applications.						
Expectations		Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)				
6.NR.2.1	Describe and interpret the center of the distribution by the equal share value (mean).	Age/Developmentally Appropriate - The concept of mean should be explored visually and conceptually before introducing the formula. - This is the beginning of the progression of the concept of measures of center and will continue to be developed in $6^{\text {th }}$ grade.		Strategies and Methods - Students should be given the opportunity to use manipulatives such as: snap cubes, tiles, etc...to model equal share value.	Example - "If we combined all of the 5th grade students' candies and shared them equally with each student so everyone has the same number of candies." (This is the mean or equal share value.)	
6.NR.2.2	Summarize categorical and quantitative (numerical) data sets in relation to the context: display the distributions of quantitative (numerical) data in plots on a number line, including dot plots, histograms, and box plots and display the distribution of categorical data using bar graphs.	Fundamentals - Students have experience with displaying categorical data using bar graphs from elementary grades. In sixth grade, students are extending their understanding of analyzing categorical data	Strategies and Methods - As a result of an investigation, students should summarize categorical and quantitative (numerical) data sets in relation to the context. - Students should be able to describe the	Age/Developmentally Appropriate - Sixth grade students should be able to create dot plots and box plots to analyze the results of an investigation. - Sixth grade students should focus on describing and interpreting data displayed. - Students should be able to identify that each quartile presented in a box plot	Exam	ples egorical Example: Size of Dogs in Dog Show

		displayed on histograms.	nature of the repr attribute under set. investigation, including how it was measured and its units of measurement.	represents 25% of the data set.	What could be the weight of the smallest dog? The largest? - Quantitative (Numerical) Example: Here are the birth weights, in ounces, of all the puppies born at a kennel in the past month. Birth Weight of Puppies What do you notice and wonder about the distribution of the puppy weights?
6.NR.2.3	Interpret numerical data to answer a statistical investigative question created. Describe the distribution of a quantitative (numerical) variable collected, including its center, variability, and overall shape.	Fundamentals - In sixth grade, students should explore the conceptual idea of MAD - not the formula. - Students should be able to determine the number of observations from a context or diagram. - Students should be able to describe the distribution of a quantitative (numerical) variable collected, including its center (median, mean), variability (interquartile range (IQR), mean absolute deviation (MAD), and range), and overall shape	Terminology - Students should be able to apply their understanding of absolute value (rather than use operations on negative integers) in the context of MAD.	Strategies and Methods - Students should explore conceptually the measures of center (mean, median) and variability (interquartile range and range) for a set of numerical data gathered from relevant, mathematical situations and use these measures to describe the shape of the data presented in various forms.	Example - Arthur and Aaron are on the same $6^{\text {th }}$ grade basketball team. Both players have scored an average of ten points over the past ten games. Here are the students' number of points scored during each of the last ten games. Arthur: $9,10,10,11,11,9,10$, 10, 10, 10 Aaron: 16, 18, 4, 3, 5, 13, 18, 3, 13, 7 Which student is more consistent? Possible Student Response/Solution: Arthur is more consistent because his MAD is smaller than Aaron's

		(symmetrical vs nonsymmetrical). - Data sets can be limited to no more than 10 data points when exploring the mean absolute deviation. - Students should be able to describe the nature of the attribute under investigation, including how it was measured and its units of measurement.			MAD; Arthur has less variability than Aaron.
6.NR.2.4	Design simple experiments and collect data. Use data gathered from realistic scenarios and simulations to determine quantitative measures of center (median and/or mean) and variability (interquartile range and range). Use these quantities to draw conclusions about the data, compare different numerical data sets, and make predictions.	Fundamentals - Students should be able center and variability to and make predictions ba - Students should be able represents 25% of the da	to use quantitative measures of draw conclusions about data sets sed on comparisons. to identify that each quartile ta set.	Strategies and Methods - Students should center (mean, range) to determ variability, draw different-numerica gathered from	standing of the measures of ariability (interquartile range and tive measures of center and about the data, compare and make predictions using data rios and simulations.
6.NR.2.5	Relate the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.	Fundamentals - Students should und	stand the concept of outliers.	Strategies and Methods - Students should distribution and variability best data and the c	nalyze the shape of a data wich measure of center and data based on the shape of the the data was gathered.
6.NR.2.6	Describe the impact that inserting or deleting a data point has on the mean and the median of a data set. Create data displays using a	Strategies and Methods - Students should be able to analyze the shape of a data distribution and determine the impact single data points have on the data set represented visually.			

	mathematical situations. Compare rational numbers, including integers, using equality and inequality symbols.	meaning of numerical statements of inequality as the relative position of two integers positioned on a number line. - Students are introduced to rational numbers. Students should connect their understanding of fractions and integers to comprehend rational numbers as numbers that can be written as a fraction where the numerator and denominator are integers.	numerator and denominator are integers.	- Interpret $-8.3>-12.3$ as a statement that -8.3 is located to the right of -12.3 on a number line oriented from left to right.
6.NR.3.5	Explain the absolute value of a rational number as its distance from zero on the number line; interpret absolute value as distance for a positive or negative quantity in a relevant situation.	Terminology - Absolute value is a number's distance from zero (0) on a number line.	Fundamentals - Students should be introduced to the absolute value symbol with this learning objective, i.e., $\left\|-\frac{3}{4}\right\|$. - Students should conclude through exploration that absolute value and distance are always expressed as a positive value.	Example - For an account balance of -51.25 dollars, write $\|-51.25\|=51.25$ to describe the size of the debt in dollars.
6.NR.3.6	Distinguish comparisons of absolute value from statements about order.	Example - Recognize that an account	nce less than -30 dollars represents a debt great	an 30 dollars.

6.NR.4: Solve a variety of contextual problems involving ratios, unit rates, equivalent ratios, percentages, and conversions within measurement systems using proportional reasoning.						
	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)				
6.NR.4.1	Explain the concept of a ratio, represent ratios, and use ratio language to describe a relationship between two quantities.	Strategies and Methods - Students should be able to solve problems involving ratios found in everyday situations. - Students should be given the opportunity to represent and explain the concept of a ratio and the relationship between two quantities using concrete materials, drawings, tape diagrams (bar models), double number line diagrams, equations, and standard fractional notation.	Fundamentals - Students should explain the conce such as using part part-to-whole. - Students should b fluently use ratio describe a ratio re between two qua - Students should identify standard notation to comp	e able to pt of a ratio, -to-part or e able to language to elationship ntities. e able to fractional are.	Example - The ra house every - For ev candi votes	io of wings to beaks in the bird at the zoo was $2: 1$, because for wings there was 1 beak. ry vote candidate A received, te C received nearly three
6.NR.4.2	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.	Strategies and Methods - Students should be able to solve problems involving ratios found in realistic situations.				
6.NR.4.3	Solve problems involving proportions using a variety of student-selected strategies.	Strategies and Methods - Students should be given opportunities to utilize student-selected strategies to solve applicable, mathematical problems involving proportions. - Students should be given the opportunity to use concrete materials, drawings, tables of equivalent ratios, tape diagrams (bar models), double number line diagrams, and equations when solving problems. - Students can choose a strategy from a variety of strategies developed to solve a specific problem depending on the situation presented in the problem.				
6.NR.4.4	Describe the concept of rates and unit rate in the context of a ratio relationship.	Strategies and Methods - Students should create a table of values displaying the ratio relationships to graph ordered pairs of distances and times. - Students should write equations to represent	Fundamentals - When asked practical, mathematical questions, students should demonstrate an understanding of	Terminolog	dents should derstand a t rate as a ationship of where $b=1$ associated	Examples - We paid $\$ 75$ for 15 hamburgers, which is a rate of \$5 per one hamburger? - In a problem involving motion at a constant speed, list and graph

GEOMETRIC \& SPATIAL REASONING - area of polygons, volume of right rectangular prisms, surface area of 3-D figures

6.GSR.5: Solve relevant problems involving area, surface area, and volume.

	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)		
6.GSR.5.1	Explore area as a measurable attribute of triangles, quadrilaterals, and other polygons conceptually by composing or decomposing into rectangles, triangles, and other shapes. Find the area of these geometric figures to solve problems.	Age and Developmentally Appropriate - Students should build on prior knowledge of area to investigate the area of other polygons through geometric and spatial reasoning tasks.	Strategies and Methods - Students should be able to use knowledge of area of a rectangle to determine the area of a triangle. - Students should have opportunities to find the area of a triangle by decomposing the rectangle into two triangles. - Students should conclude the area of the triangle is half the area of the rectangle and the area of the rectangle is twice the area of the triangle. Therefore, the formula for the area of a triangle is $\frac{1}{2} x$ base x height or $\frac{\text { base } x \text { height }}{2}$. - Students should be able to use geometric and spatial reasoning to calculate the area of a triangle, quadrilateral, and regular polygon by composing or decomposing into shapes, such as, but not limited to triangles, rectangles, trapezoids, rhombi, etc. - Students should be presented with mathematical problems found in the real world. - Students should be able to decompose regular and irregular polygons into triangles and quadrilaterals in a way that makes sense from their perspective.	Terminology - A polygon is a closed figure with at least three straight sides and angles; a polygon is regular only when all sides are equal and all angles are equal; and a polygon is irregular when all sides are not equal or all angles are not equal.

6.GSR.5.2	Given the net of three-dimensional figures with rectangular and triangular faces, determine the surface area of these figures.	Strategies and Methods - Students should use various tools and strategies including a picture or physical model of a net to measure the surface area of three-dimensional figures that are composed of rectangular and triangular faces when solving practical, mathematical problems.		Age and Developmentally Appropriate - Students should be provided the net of threedimensional figures to ensure developmental appropriateness.	
6.GSR.5.3	Calculate the volume of right rectangular prisms with fractional edge lengths by applying the formula, $\mathrm{V}=$ (area of base) x (height).	Age and Developmentally Appropriate - Fractional edge lengths should be limited to fractions with a denominator of 2,3 , and 5 . - At this grade level, problems should not include volume displacement.	Fundamentals - Stude the co betw (width) the b form dimen form	s should make nection n (length) x and the area of e to connect this to other threeional volume s.	Strategies and Methods - Students should be able to calculate the volume of a right rectangular prism with fractional edge lengths and show that the volume is the same as would be found by multiplying the edge lengths of the prism. - Students should apply the formula for the volume of a right rectangular prism in the context of solving authentic, mathematical problems to meet this learning objective.

PATTERNING \& ALGEBRAIC REASONING - numerical and algebraic expressions, factors, multiples, algebraic expressions, plotting points in all four quadrants, rational numbers on a number line, polygons in the coordinate plane
6.PAR.6: Identify, write, evaluate, and interpret numerical and algebraic expressions as mathematical models to explain authentic situations.

	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)		
6.PAR.6.1	Write and evaluate numerical expressions involving rational bases and whole-number exponents.	Strategies and Methods - Students should interpret relevant, mathematical situations to write and evaluate numerical expressions.		
6.PAR.6.2	Determine greatest common factors and least common multiples using a variety of strategies to make sense of applicable problems.	Strategies and Methods - Investigate the distributive property using sums and its use in adding numbers 1100 with a common factor. - Students should apply these strategies to solve applicable, mathematical problems.	Age/Developmentally Appropriate - Students should also be able to apply the least common multiple of two whole numbers less than or equal to 12 to solve applicable, mathematical problems. - Students should be able to determine the greatest common factor of 2 whole numbers (from	Example - Hotdogs come in a package of 8 and buns in a package of 12. How many packages of hot dogs and packages of buns would you need to purchase to have an equal number of hot dogs and buns?

		1-100) and property to two whole n common fac a sum of tw with no com	se the distributive express a sum of umbers with a tor as a multiple of whole numbers mon factors (GCF).	
6.PAR.6.3	Write and read expressions that represent operations with numbers and variables in realistic situations.	Strategies and Methods - Students should identify parts of an expression using mathematical terms (sum, difference, term, product, factor, quotient, coefficient, variable, constant); view one or more parts of an expression as a single entity. - Students should translate from a word form into variable expression. - Students should understand letters called variables represent unknown numbers and the same rules apply in operations with numbers also apply in operations with variables.	Examples - Express the calculation "Subtract x from 9 " as $9-\mathrm{x}$. - Describe the expression $2(8+7)$ as a product of two factors; view ($8+7$) as both a single entity and a sum of two terms. - Some of the students at Georgia Middle School like to walk to and from school. They always walk unless it rains. Let d be the distance in miles from a student's home to the school. Write two different expressions that represent how far a student travels by walking in a twoweek period if there is one rainy day each week. - Possible Solution: The distance to school, and therefore home, is d. Thus, the student rides ($d+d$) miles in one day. Equivalently, she rides (2d) miles in one day. Repeatedly adding the distance traveled in one day for each school day of the week, we find that in one week the student travels $(2 d+2 d+2 d+2 d+2 d)$ miles. Equivalently, she travels 5(2d) or (10d) miles in a normal, rain free week.	
6.PAR.6.4	Evaluate expressions when given values for the variables, including expressions that arise in everyday situations.	Fundamentals - Students should evaluate algebraic expressions for a given value of a variable, using the order of operations. - Students should perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations).		
6.PAR.6.5	Apply the properties of operations to identify and generate equivalent expressions.	Example - Apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression $6(4 x+3 y)$; apply properties of operations to $\mathrm{y}+\mathrm{y}+\mathrm{y}$ to produce the equivalent expression $3 y$.	Age/Developmentally Appropriate - This standard includes distributive property and combining like terms.	

6.PAR.7: Write and solve one-step equations and inequalities as mathematical models to explain authentic, realistic situations.			
	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)	
6.PAR.7.1	Solve one-step equations and inequalities involving variables when values for the variables are given. Determine whether an equation and inequality involving a variable is true or false for a given value of the variable.	Strategies and Methods - Students should be able to use algebraic reasoning to solve an equation as a process of answering an authentic question and explain their reasoning. - When solving an equation or inequality as a process of answering a question, students should be able to explain why specific values from a specified set, if any, make the equation or inequality true. - Students should use substitution to determine whether a given number in a specified set makes an equation or inequality true.	
6.PAR.7.2	Write one-step equations and inequalities to represent and solve problems; explain that a variable can represent an unknown number or any number in a specified set.	Age/Developmentally Appropriate - Students should be able to represent equations involving positive variables and rational numbers. - Students should have opportunities to solve relevant, mathematical problems.	Strategies and Methods - Students should have an opportunity to solve problem situations with variables in all positions. - Students should be able to explain that a variable can represent an unknown number, or depending on the purpose at hand, any number in a specified set.
6.PAR.7.3	Solve problems by writing and solving equations of the form $\mathrm{x} \pm \mathrm{p}=\mathrm{q}, \mathrm{px}=\mathrm{q}$ and $\frac{x}{p}=$ q for cases in which p, q and x are all nonnegative rational numbers.	Strategies and Methods - Students should have opportunities to use concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction and multiplication and division when solving one-step equations. - Students should be able to solve equations presented in applicable, mathematical problems involving positive rational numbers using number sense, properties of arithmetic and the idea of maintaining equality on both sides of the equation. - Students should be able to interpret a solution in the original context and assess the reasonableness of results.	
6.PAR.7.4	Recognize and generate inequalities of the form $x>c, x \geq c, x<c$, or $x \leq c$ to explain situations that have infinitely many solutions; represent solutions of such inequalities on a number line.	Strategies and Methods - Students should represent authentic, mathematical situations using inequalities involving variables. - Students should be able to create practical, mathematical situations corresponding to specific inequalities. - This objective includes the use of the symbols: $<,>,=, \leq, \geq$.	

6.PAR.8: Graph rational numbers as points on the coordinate plane to represent and solve contextual, mathematical problems; draw polygons using the coordinates for their vertices and find the length of a side of a polygon.						
	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)				
6.PAR.8.1	Locate and position rational numbers on a horizontal or vertical number line; find and position pairs of integers and other rational numbers on a coordinate plane.	Fundamentals - Students should use numerical and graphical reasoning to plot points in all four quadrants on the coordinate plane.		Strategies and Methods - Students should extend understanding of number lines and coordinate axes from previous grades to represent points on the line and in the plane with negative number coordinates.		
6.PAR.8.2	Show and explain that signs of numbers in ordered pairs indicate locations in quadrants of the coordinate plane and determine how two ordered pairs may differ based only on the signs.	Fundamentals - Students should use numerical and graphical reasoning to interpret points in all four quadrants on the coordinate plane based on the signs.	Strategies and Methods - Students should use numerical and graphical reasoning to show and explain the relationship between ordered pairs and location in quadrants of the coordinate plane.		Example - A student is able explain that (1, 2) quadrant wherea fourth quadrant coordinate is neg points are the sa the horizontal ax directions.	to compare and is in the first s $(1,-2)$ is in the because the y ative and the two me distance from es in different
6.PAR.8.3	Solve problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same x coordinate or the same y-coordinate.	Relevance and Application - Students should be able mathematical problems points.	solve relevant, hen graphing	Strategies and - Stud probl	thods s should be expected to so s within the context of a g	relevant h only.
6.PAR.8.4	Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same x-coordinate or the same y coordinate.	Relevance and Application - Students should apply th graphing in the coordin relevant problems involv of algebra through geom	techniques of plane to solve g the application try.	Strategies and - Stud polyg a coo	ethods s should be able to solve p s when given coordinate p inate grid.	lems with with or without

ESSENTIAL INSTRUCTIONAL GUIDANCE

MATHEMATICAL PRACTICES

The Mathematical Practices describe the reasoning behaviors students should develop as they build an understanding of mathematics - the "habits of mind" that help students become mathematical thinkers. There are eight standards, which apply to all grade levels and conceptual categories.

These mathematical practices describe how students should engage with the mathematics content for their grade level. Developing these habits of mind builds students' capacity to become mathematical thinkers. These practices can be applied individually or together in mathematics lessons, and no particular order is required. In well-designed lessons, there are often two or more Mathematical Practices present.

MATHEMATICAL PRACTICES

MP: Display perseverance and patience in problem-solving. Demonstrate skills and strategies needed to succeed in mathematics, including critical thinking, reasoning, and effective collaboration and expression. Seek help and apply feedback. Set and monitor goals. Code Expectation	
MP. 1	Make sense of problems and persevere in solving them.
MP. 2	Reason abstractly and quantitatively.
MP. 3	Construct viable arguments and critique the reasoning of others.
MP.4	Model with mathematics.
MP. 5	Use appropriate tools strategically.
MP.6	Look for and make use of structure.
MP. 7	Look for and express regularity in repeated reasoning.
MP.8	

MATHEMATICAL MODELING

Teaching students to model with mathematics is engaging, builds confidence and competence, and gives students the opportunity to collaborate and make sense of the world around them, the main reason for doing mathematics. For these reasons, mathematical modeling should be incorporated at every level of a student's education. This is important not only to develop a deep understanding of mathematics itself, but more importantly to give students the tools they need to make sense of the world around them. Students who engage in mathematical modeling will not only be prepared for their chosen career but will also learn to make informed daily life decisions based on data and the models they create.

The diagram below is a mathematical modeling framework depicting a cycle of how students can engage in mathematical modeling when solving a realistic problem or task.

A Mathematical Modeling Framework

Explore \& describe reallife, mathematical situations or problems.

> Evaluate the model and interpret solutions generated from other models. Draw and validate conclusions.

Critical thinking Communication Collaboration Creative Problem Solving

Gather information, make assumptions, and define variables related to the problem.

FRAMEWORK FOR STATISTICAL REASONING

Statistical reasoning is important for learners to engage as citizens and professionals in a world that continues to change and evolve. Humans are naturally curious beings and statistics is a language that can be used to better answer questions about personal choices and/or make sense of naturally occurring phenomena. Statistics is a way to ask questions, explore, and make sense of the world around us.

The Framework for Statistical Reasoning should be used in all grade levels and courses to guide learners through the sense-making process, ultimately leading to the goal of statistical literacy in all grade levels and courses. Reasoning with statistics provides a context that necessitates the learning and application of a variety of mathematical concepts.

FIGURE 1: GEORGIA FRAMEWORK FOR STATISTICAL REASONING

The following four-step statistical problem-solving process can be used throughout each grade level and course to help learners develop a solid foundation in statistical reasoning and literacy:
I. Formulate Statistical Investigative Questions

Ask questions that anticipate variability.
II. Collect \& Consider the Data

Ensure that data collection designs acknowledge variability.
III. Analyze the Data

Make sense of data and communicate what the data mean using pictures (graphs) and words. Give an accounting of variability, as appropriate.

IV. Interpret the Results

Answer statistical investigative questions based on the collected data.

6 $^{\text {th }}$ Grade: Formulate an investigative question, and collect, model, and analyze data distributions for variability to answer statistical questions and solve problems in context.			
Ask	Collect	Analyze	Interpret
Create a statistical investigative question that can be answered by gathering data from real situations and determine strategies for gathering data to answer the statistical investigative question. Distinguish between statistical and nonstatistical questions. Write a statistical investigative question as one that anticipates variability in the data.	Summarize categorical and quantitative (numerical) data sets in relation to the context: display the distributions of quantitative (numerical) data in plots on a number line, including dot plots, histograms, and box plots and display the distribution of categorical data using bar graphs. Design simple experiments and collect data. Use data gathered from realistic scenarios and simulations to determine quantitative measures of center (median and/or mean) and variability (interquartile range and range). Use these quantities to draw conclusions about the data, compare different numerical data sets, and make predictions.	Relate the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered. Describe the impact that inserting or deleting a data point has on the mean and the median of a data set. Create data displays using a dot plot or box plot to examine this impact.	Interpret numerical data to answer the statistical investigative question created. Describe the distribution of a quantitative (numerical) variable collected, including its center, variability, and overall shape, to answer a statistical investigative question.

Instructional Supports

- Students should be able to use the statistical process to formulate questions. The statistical process involves asking a statistical investigative question, collecting the data, analyzing the data, and interpreting the results. As a result of an investigation, students should summarize categorical and quantitative (numerical) data sets in relation to the context.
- Students have experience with displaying categorical data using bar graphs from elementary grades. In sixth grade, students are extending their understanding of analyzing categorical data displayed on histograms. Students should be able to determine the number of observations from a context or diagram. Students should be able to analyze the shape of a data distribution and determine the impact single data points have on the data set represented visually.
- To develop solid statistical reasoning, students should be able to use quantitative measures of center and variability to draw conclusions about data sets and make predictions based on comparisons.
- Students should explore conceptually the measures of center (mean, median) and variability (interquartile range and range) for a set of numerical data gathered from contextual, mathematical situations and use these measures to describe the shape of the data presented in various forms.
- In sixth grade, students should explore the conceptual idea of MAD - not the formula. Data sets can be limited to no more than 10 data points when exploring the mean absolute deviation. Students should be able to apply their understanding of absolute value (rather than use operations on negative integers) in the context of MAD.
- Students should be able to describe the distribution of a quantitative (numerical) variable collected to answer a statistical investigative question, including its center (median, mean), variability (interquartile range (IQR), mean absolute deviation (MAD), and range), and overall shape (symmetrical vs non-symmetrical). Students should be able to identify that each quartile represents 25% of the data set. Students should understand the concept of outliers.
- Students should be able to describe the nature of the statistical attribute under investigation, including how it was measured and its units of measurement.
- Students should apply understanding of the measures of center (mean, median) and variability (interquartile range and range) to determine quantitative measures of center and variability, draw conclusions about the data, compare different numerical data sets and make predictions using data gathered from realistic scenarios and simulations.

COMPUTATIONAL STRATEGIES FOR WHOLE NUMBERS

Georgia Department of Education

Mathematics Place-Value Strategies and US Traditional Algorithms

Specific mathematics strategies for teaching and learning are not mandated by the Georgia Department of Education or assessed on state or federally mandated tests. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and-makes sense to them. It is critical that teachers and parents remain partners to help each child grow to become a mathematically literate citizen. These standards preserve and affirm local control and flexibility.

In mathematics, the emphasis is on the reasoning and thinking about the quantities within mathematical contexts. Algorithms, tape diagrams (bar models), and number line representations are a few examples of ways that students communicate their strategic thinking in a written form.

It is important to note that the examples of strategies provided in the tables are not all inclusive. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and makes sense to them.

Subtraction Example: 2145-178

Number Line Representation:

It is important to note that the examples of strategies provided in the tables are not all inclusive. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and makes sense to them.

Multiplication Example: 25×24		
US Traditional Algorithm: $\begin{array}{r} 1_{2} \\ 25 \\ \times \quad 24 \\ \hline \\ \hline \quad 100 \\ +\quad 500 \\ \hline 600 \end{array}$	Description: As students make sense of and use multiplication strategies and algorithms, it is important for them to demonstrate a deep understanding of the relationship between the quantities presented in the mathematics number sentence and to attend to precision in their explanations. Students are encouraged to use strategies such as partial products, friendly numbers, and a combination of known facts to determine solutions to new problems. It is also important for students to maintain the ability to choose which part-whole strategy is best to communicate their mathematical thinking. Flexibility in thinking is key!	Place Value Algorithm: $\begin{array}{rrl} & 25 \\ \times & 24 \\ \hline & 400 & \\ \hline & (20 \times 20) \\ + & 100 & (20 \times 5) \\ + & 80 & (4 \times 20) \\ + & 20 & (4 \times 5) \\ \cline { 1 - 2 } & 600 & \end{array}$
Area Representation (Part	Products): $(5 \times 4)+(5 \times 20)+(20 \times 4)+(20 \times 20)=(25 \times 24)$	

It is important to note that the examples of strategies provided in the tables are not all inclusive. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and makes sense to them.

Division Example: $1917 \div 9$

Number Line Representation:

$$
200+10+3=213
$$

It is important to note that the examples of strategies provided in the tables are not all inclusive. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and makes sense to them.

[^0]: Units contain tasks that depend upon the concepts addressed in earlier units. Mathematical standards are interwoven and should be addressed throughout the year in as many different units and tasks as possible in order to stress the natural connections that exist among mathematical topics.
 The Framework for Statistical Reasoning, Mathematical Modeling Framework, and the K-12 Mathematical Practices should be taught throughout the units.
 Key for Course Standards: NR: Numerical Reasoning, PAR: Patterning \& Algebraic Reasoning, GSR: Geometric \& Spatial Reasoning

