## $7^{\text {th }}$ Grade Mathematics Teaching and Learning Framework

| $7{ }^{\text {th }}$ Grade Mathematics Teaching and Learning Framework |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Semester 1 |  |  | Semester 2 |  |  |  |
| Unit 1 <br> 8 weeks | Unit 2 <br> 7 weeks | Unit 3A <br> 3 weeks | Unit 3B <br> 7 weeks | Unit 4 <br> 5 weeks | Unit 5 <br> 3 weeks | Unit 6 <br> 3 weeks |
| Making Relevant Connections within the Number System 7.NR. 1 | Reasoning with Expressions, Equations, and Inequalities <br> 7.PAR. 2 <br> 7.PAR. 3 | Exploring Ratios and Proportional Relationships 7.PAR. 4 | Exploring Ratios and Proportional Relationships 7.PAR. 4 | Making Relevant Connections with Geometry 7.GSR. 5 | Investigating Probability 7.PR. 6 | Culminating Capstone |
| 7.NR.1.1 <br> (Opposites/Additive Inverse) <br> 7.NR.1.2 <br> (Add rational Numbers) <br> 7.NR.1.3 <br> (Represent rational numbers on number line) <br> 7.NR.1.4 <br> (Subtract Rational Numbers) <br> 7.NR.1.5 <br> (Apply Properties to Add and Subtract) <br> 7.NR.1.6 <br> (Multiply Rational Numbers) <br> 7.NR.1.7 <br> (Divide Rational Numbers) <br> 7.NR.1.8 <br> (Represent and Interpret Products \& Quotients) <br> 7.NR.1.9 <br> (Apply Properties to Multiply and Divide) <br> 7.NR.1.10 <br> (Converting Fractions, Decimals \& Percents) <br> 7.NR.1.11 <br> (Application of Rational Number) | 7.PAR.2.1 <br> (Apply properties to Rewrite Linear Expressions) <br> 7.PAR.2.2 <br> (Write Expressions from Contextual Problems) <br> 7.PAR.3.1 <br> (Write and Solve Multi-Step Equations) <br> 7.PAR.3.2 <br> (Write and Solve Multi-Step Inequalities) | 7.PAR.4.10 <br> (Predict Characteristics for Populations) <br> 7.PAR.4.11 <br> (Analyze <br> Sampling <br> Methods) <br> 7.PAR.4.12 <br> (Predictions of Random <br> Samples) | 7.PAR.4.1 (Compute Unit Rates) 7.PAR.4.2 (Application of Unit Rates) 7.PAR.4.3 (Proportions) 7.PAR.4.4 (Identify \& Represent Proportions) 7.PAR.4.5 (Unit Rate on a Coordinate Plane) 7.PAR.4.6 (Scale Drawings) 7.PAR.4.7 (Use similar triangles to explain slope) 7.PAR.4.8 (Graph \& Interpret Proportions as Unit Rate) 7.PAR.4.9 (Application of Multi-Step Ratios \& Percents) | 7.GSR.5.1 (Angle Measures with Non- Standard Units) 7.GSR.5.2 (Angle Measures with Protractors) 7.GSR.5.3 (Create \& Solve Equations using Angle Relationships) 7.GSR.5.4 (Derive Formula for Area and Circumference of a Circle) 7.GSR.5.5 (Apply the Formula for Area and Circumference of a Circle) 7.GSR.5.6 (Surface Area of Right Prisms \& Cylinders) 7.GSR.5.7 (Cross Sections) 7.GSR.5.8 (Volume of Cylinders \& Right Prisms) | 7.PR.6.1 <br>  <br> Unlikely <br> Events) <br> 7.PR.6.2 <br> (Predict given <br> Theoretical <br> Probability) <br> 7.PR.6.3 <br> (Probability of <br> Simple Events) <br> 7.PR.6.4 <br> (Use Models to Determine Outcomes) <br> 7.PR.6.5 <br> (Create Models <br> by Observing <br> Frequencies) <br> 7.PR.6.6 <br> (Use Models to Make Inferences) | $\begin{gathered} \hline \text { All } \\ \text { Standards } \end{gathered}$ |
| Units contain tasks that depend upon the concepts addressed in earlier units. Mathematical standards are interwoven and should be addressed throughout the year in as many different units and tasks as possible in order to stress the natural connections that exist among mathematical topics. |  |  |  |  |  |  |
| The Framework for Statistical Reasoning, Mathematical Modeling Framework, and the K-12 Mathematical Practices should be taught throughout the units. |  |  |  |  |  |  |
| Key for Course Standards: PAR: Patterning \& Algebraic Reasoning, GSR: Geometric \& Spatial Reasoning, NR: Numerical Reasoning, PR: Probability Reasoning |  |  |  |  |  |  | $\overline{\text { Georgia Department of Education }}$

# GEORGIA'S K-12 MATHEMATICS STANDARDS 2021 

Governor Kemp and Superintendent Woods are committed to the best set of academic standards for Georgia's students - laying a strong foundation of the fundamentals, ensuring age- and developmentally appropriate concepts and content, providing instructional supports to set our teachers up for success, protecting and affirming local control and flexibility regarding the use of mathematical strategies and methods, and preparing students for life. These Georgia-owned and Georgia-grown standards leverage the insight, expertise, experience, and efforts of thousands of Georgians to deliver the very best educational experience for Georgia's 1.7 million students.

In August 2019, Governor Brian Kemp and State School Superintendent Richard Woods announced the review and revision of Georgia's K-12 mathematics standards. Georgians have been engaged throughout the standards review and revision process through public surveys and working groups. In addition to educator working groups, surveys, and the Academic Review Committee, Governor Kemp announced a new way for Georgians to provide input on the standards: the Citizens Review Committee, a group composed of students, parents, business and community leaders, and concerned citizens from across the state. Together, these efforts were undertaken to ensure Georgians will have buy-in and faith in the process and product.

The Citizens Review Committee provided a charge and recommendations to the working groups of educators who came together to craft the standards, ensuring the result would be usable and friendly for parents and students in addition to educators. More than 14,000 Georgians participated in the state's public survey from July through September 2019, providing additional feedback for educators to review. The process of writing the standards involved more than 200 mathematics educators -- from beginning to veteran teachers, representing rural, suburban, and metro areas of our state.

Grade-level teams of mathematics teachers engaged in deep discussions; analyzed stakeholder feedback; reviewed every single standard, concept, and skill; and provided draft recommendations. To support fellow mathematics teachers, they also developed learning progressions to show when key concepts were introduced and how they progressed across grade levels, provided examples, and defined age/developmentally appropriate expectations.

These teachers reinforced that strategies and methods for solving mathematical problems are classroom decisions -- not state decisions -- and should be made with the best interest of the individual child in mind. These recommended revisions have been shared with the Academic Review Committee, which is composed of postsecondary partners, age/development experts, and business leaders, as well as the Citizens Review Committee, for final input and feedback.

Based on the recommendation of Superintendent Woods, the State Board of Education will vote to post the draft K-12 mathematics standards for public comment. Following public comment, the standards will be recommended for adoption, followed by a year of teacher training and professional learning prior to implementation.

# Use of Mathematical Strategies and Methods \& Affirming Local Control 

These standards preserve and affirm local control and flexibility regarding the use of the "standard algorithm" and other mathematical strategies and methods. Students have the right to use any strategy that produces accurate computations, makes sense, and is appropriate for their level of understanding.

Therefore, the wording of these standards allows for the "standard algorithm" as well as other cognitive strategies deemed developmentally appropriate for each grade level. Revised state tests will not measure the students' use of specific mathematical strategies and methods, only whether students understand the key mathematical skills and concepts in these standards.

Teachers are afforded the flexibility to support the individual needs of their students. It is critical that teachers and parents remain partners to help each child grow to become a mathematically literate citizen.

Georgia's K-12 Mathematics Standards - 2021
Mathematics Big Ideas and Learning Progressions, 6-8

Mathematics Big Ideas, 6-8

| 5 | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | HS <br> Algebra: Concepts <br> \& Connections | HS <br>  <br> Connections |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MATHEMATICAL PRACTICES \& MODELING |  |  |  |  |  |
| DATA \& STATISTICAL REASONING |  |  |  |  |  |
| NUMERICAL REASONING (NR) |  |  |  |  |  |
| PATTERNING \& ALGEBRAIC REASONING (PAR) |  |  |  |  |  |
| GEOMETRIC \& SPATIAL REASONING (GSR) |  |  |  |  |  |
|  | PROBABILITY <br> REASONING <br> (PR) | PROBABILISTIC REASONING <br> (PR) |  |  |  |

## 6-8 MATHEMATICS: LEARNING PROGRESSIONS

| Key Concepts | 5 | 6 | 7 | 8 | HS Algebra: <br> Concepts \& Connections | HS Geometry: <br> Concepts \& Connections |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NUMERICAL REASONING |  |  |  |  |  |  |
| Numbers (rational numbers and irrational numbers) | - Multi-digit whole numbers <br> - Fractions with unlike denominators <br> - Fractions greater than 1 <br> - Decimal numbers to thousandths <br> - Powers of 10 to $10^{3}$ | - Rational numbers as a  <br> concept  <br> $\circ$ Integers <br> $\circ$ Fractions <br> $\circ$ Decimal <br>  numbers | - All rational numbers <br> - Simple probability | - All rational numbers <br> - Scientific notation <br> - Numerical expressions with integer exponents <br> - Use appropriate counting strategies to approximate rational and irrational numbers (radicals) on a number line | - All rational numbers <br> - Operations with radicals | - All numbers in The Real Number System |
| Computational Fluency | - Add \& subtract fractions with unlike denominators <br> - Add and subtract decimal numbers to the hundredths place <br> - Multiply \& divide multidigit whole numbers <br> - Multiply fractions and whole numbers <br> - Divide unit fractions and whole numbers <br> - Reason about multiplying by a fraction >, <, or = 1 | - All operations with whole numbers, fractions, and decimal numbers <br> - Write \& evaluate numerical expressions <br> - Convert fractions with denominators of $2,4,5$ and 10 to the decimal notation | - Operations with rational numbers <br> - Rational numbers <br> - Convert fractions with all denominators to decimal numbers | - Operations with scientific notation <br> - Scientific notation in real situations seen in everyday life <br> - Expressions with integer exponents | - Operations with real numbers (rational and irrational) <br> - Multiplication of irrational numbers |  |
| Comparisons | - Decimal fractions to thousandths place <br> - Fractions greater than 1 | - Integers <br> - Unit rates <br> - Ratios <br> - Numerical data distributions <br> - Measures of variation <br> - Absolute value <br> - Display and analyze categorical and quantitative (numerical) data | - Rational numbers <br> - Probabilities <br> - Random sampling | - Rational and irrational numbers (radicals) <br> - Compare proportional relationships presented in different ways | - Rate of change (slope) <br> - Intercept <br> - Distributions of two or more data sets |  |

6-8 MATHEMATICS: LEARNING PROGRESSIONS

| Key Concepts | 5 | 6 | 7 | 8 | HS Algebra: <br> Concepts \& Connections | HS Geometry: Concepts \& Connections |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PATTERNING \& ALGEBRAIC REASONING |  |  |  |  |  |  |
| Patterns | - Generate two numerical patterns from a given rule <br> - Identify relationships using a table | - Greatest common factor \& least common multiple | - Constant of proportionality | - Integer exponents <br> - Perfect squares and perfect cubes | - Arithmetic sequences <br> - Geometric sequences |  |
| Expressions | Numerical Reasoning <br> - Simple numerical expressions involving whole numbers with or without grouping symbols <br> - Express fractions as division problems | - Write, analyze, and evaluate numerical and algebraic expressions <br> - Identify, generate, and evaluate algebraic expressions <br> - Identify like terms in an algebraic expression | - Add, subtract, factor \& expand linear expressions <br> - Rewrite expressions <br> - Fluency with combining like terms in an algebraic expression <br> - Linear expressions with rational coefficients | - Expressions with integer exponents <br> - Linear expressions <br> - Operations with algebraic expressions | - Exponential expressions <br> - Quadratic expressions | - Expressions of varying degrees <br> - Add, subtract, multiply single variable polynomials <br> - Adding, Subtracting and Multiplying Polynomials <br> - Factoring and expanding polynomials |
| Variable Equations \& Inequalities |  | - Write and solve one-step equations \& inequalities | - Construct \& solve multi-step algebraic equations and inequalities | - Analyze and solve linear equations and inequalities | - Exponential equations <br> - Quadratic equations <br> - Equations of parallel and perpendicular lines <br> - Analyze and solve linear inequalities | - Equations involving geometric measurement |
| Ratios \& Rates |  | Numerical Reasoning with ratios and rates: <br> - Concept of ratio and rate <br> - Equivalent ratios, percentages, unit rates <br> - Convert within measurement systems | - Compute unit rates associated with ratios of fractions <br> - Determine unit rates | - Interpret unit rate as the slope of a graph | - Convert units and rates given a conversion factor | - Side ratios of similar triangles <br> - Trigonometric ratios |
| Proportional Relationships |  |  | - Use proportional relationships <br> - Solve multi-step ratio and percent problems <br> - Scale drawings of geometric figures <br> - Use similar triangles to explain slope |  |  |  |
| Graphing | - Plot order pairs in first quadrant | - Plot order pairs in all four quadrants <br> - Show rational numbers on a number line <br> - Draw polygons on a coordinate grid <br> - Find the side length of a polygon graphed on the coordinate plane (same $x$ - or $y$ - coordinate) | - Proportional relationships | - Linear functions <br> - Comparing linear and non-linear functions <br> - Systems of linear equations (including parallel and perpendicular) <br> - Linear inequalities <br> - Analyze data distributions | - Linear functions with function notation <br> - Exponential functions <br> - Quadratic functions <br> - Systems of linear inequalities | - Equations of circles in standard form |


| 6-8 MATHEMATICS: LEARNING PROGRESSIONS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Key Concepts | 5 | 6 | 7 | 8 | HS Algebra: Concepts \& Connections | HS Geometry: Concepts \& Connections |
| FUNCTIONAL \& GRAPHICAL REASONING |  |  |  |  |  |  |
| Function Families |  |  |  | - Linear functions <br> - Line of best fit | - Linear functions with function notation <br> - Parent graphs of <br> function families <br> - Exponential functions <br> - Quadratic functions | - Function notation to represent transformations |
| GEOMETRIC \& SPATIAL REASONING |  |  |  |  |  |  |
|  <br> Properties | - Classify polygons based on geometric properties |  | - Measure angles using non-standard and standard tools <br> - Write \& solve equations using supplementary, complementary, vertical, and adjacent angles | - Introduction to Pythagorean Theorem and the converse |  | - Develop and use precise definitions to prove theorems and solve geometric problems <br> - Prove slope criteria for parallel and perpendicular lines <br> - Transform polygons using rotations, reflections, dilations, and translations. <br> - Congruence and transformations <br> - Triangle congruence <br> - Use congruence to prove relationships in geometric figures <br> - Similarity and dilations <br> - Similar triangles <br> - Use similarity to prove relationships in geometric figures <br> - Formal proofs \& theorems about triangles <br> - Trigonometric ratios (Sin, Cos, \& Tan) |


| 6-8 MATHEMATICS: LEARNING PROGRESSIONS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Key Concepts | 5 | 6 | 7 | 8 | HS Algebra: <br> Concepts \& Connections | HS Geometry: Concepts \& Connections |
| GEOMETRIC \& SPATIAL REASONING (cont.) |  |  |  |  |  |  |
| Geometric Measurement | - Volume of right rectangular prisms | - Area of triangles, quadrilaterals, and polygons <br> - Surface area <br> - Volume of right rectangular prisms with fractional edge lengths | - Relationship between parts of a circle <br> - Area \& circumference of a circle <br> - Area and surface area of figures decomposed into triangles, quadrilaterals \& circles <br> - Volume of cubes, right prisms \& cylinders | - Pythagorean Theorem to determine distance between two points <br> - Volume of cones, cylinders, and spheres | - Use distance formula, midpoint formula, and slope to calculate perimeter and area of triangles and quadrilaterals | - Volumes of prisms, cones, cylinders, pyramids, and spheres <br> - Approximate volumes of irregular objects <br> - Approximate density of irregular objects |
| PROBABILITY REASONING |  |  |  |  |  |  |
| Probability |  |  | - Represent probability <br> - Approximate probability <br> - Develop probability models (uniform \& not uniform) <br> - Find probabilities of simple events |  |  | - Categorical data \& two-way frequency tables <br> - Interpret probabilities in context |

## $7^{\text {th }}$ Grade

The seven standards listed below are the key content competencies students will be expected to master in seventh grade. Additional clarity and details are provided through the classroom-level learning objectives and evidence of student learning details for each grade-level standard found on subsequent pages of this document. As teachers are planning instruction and assessing mastery of the content at the grade level, the focus should remain on the key competencies listed in the table below.

## SEVENTH GRADE STANDARDS

7.MP: Display perseverance and patience in problem-solving. Demonstrate skills and strategies needed to succeed in mathematics, including critical thinking, reasoning, and effective collaboration and expression. Seek help and apply feedback. Set and monitor goals.
7.NR.1: Solve relevant, mathematical problems, including multi-step problems, involving the four operations with rational numbers and quantities in any form (integers, percentages, fractions, and decimal numbers).
7.PAR.2: Use properties of operations, generate equivalent expressions and interpret the expressions to explain relevant situations.
7.PAR.3: Represent authentic situations using equations and inequalities with variables; solve equations and inequalities symbolically, using the properties of equality.
7.PAR.4: Recognize proportional relationships in relevant, mathematical problems; represent, solve, and explain these relationships with tables, graphs, and equations.
7.GSR.5: Solve practical problems involving angle measurement, circles, area of circles, surface area of prisms and cylinders, and volume of cylinders and prisms composed of cubes and right prisms.
7.PR.6: Using mathematical reasoning, investigate chance processes and develop, evaluate, and use probability models to find probabilities of simple events presented in authentic situations.

## Georgia's K-12 Mathematics Standards - 2021 $7^{\text {TH }}$ Grade

| NUMERICAL REASONING - integers, percentages, fractions, decimal numbers |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7.NR.1: Solve relevant, mathematical problems, including multi-step problems, involving the four operations with rational numbers and quantities in any form (integers, percentages, fractions, and decimal numbers). |  |  |  |  |  |
|  | Expectations | Evidence of Student Learning <br> (not all inclusive; see Grade Level Overview for more details) |  |  |  |
| 7.NR.1.1 | Show that a number and its opposite have a sum of 0 (are additive inverses). Describe situations in which opposite quantities combine to make 0. | Terminology <br> - In the equation $3+-3=0,3$ and -3 are additive inverses of each other. |  | Example <br> - Your bank account balance is $\mathbf{-} \mathbf{\$ 2 5 . 0 0}$. You deposit $\$ 25.00$ into your account. The net balance is $\$ 0.00$. |  |
| 7.NR.1.2 | Show and explain $p+q$ as the number located a distance $\|q\|$ from $p$, in the positive or negative direction, depending on whether q is positive or negative. Interpret sums of rational numbers by describing applicable situations. | Strategies and Methods <br> - Students should integers and oth presented withi problems, using variety of tools. | be able to add and subtract $r$ rational numbers relevant, mathematical trategic thinking and a | Example <br> - $6+(-4)$ is 4 units to the number line or 4 units do number line. | of 6 on a horizontal from 6 on a vertical |
| 7.NR.1.3 | Represent addition and subtraction with rational numbers on a horizontal or a vertical number line diagram to solve authentic problems. | Strategies and Methods <br> - Students should represent a variety of types of rational numbers on a number line diagram presented both horizontally and vertically. |  |  |  |
| 7.NR.1.4 | Show and explain subtraction of rational numbers as adding the additive inverse, p -$q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference and apply this principle in contextual situations. | Examples <br> - Find the distance between a submarine submerged at a depth of $27 \frac{3}{4}$ feet below sea level and an airplane flying at an altitude of $1262 \frac{1}{2}$ feet above sea level. <br> - $-\frac{1}{2}-(-2)$ is the same expression as $-\frac{1}{2}+-(-2)$, which is 2 units to the right of $-\frac{1}{2}$ on a horizontal number line or 2 units up from $-\frac{1}{2}$ on a vertical number line. |  |  |  |
| 7.NR.1.5 | Apply properties of operations, including part-whole reasoning, as strategies to add and subtract rational numbers. | Fundamentals <br> - Students should be allowed to explore the signs of integers and what they really mean to discover integer rules. | Strategies and Methods <br> - Students should be able to use the Commutative and Associative properties to combine more than two rational numbers flexibly. | Terminology  <br> $\bullet$ Part-whole <br> reasoning refers to <br> how numbers can <br> be split into parts <br> to add and subtract <br> numbers more <br> efficiently. | Example <br> - $(-8)+5+(-2)$ may be solved as $(-8)+($ $-2)+5$ to first make -10 by using the Commutative Property. |



| 7.NR.1.11 | Solve multi-step, contextual problems <br> involving rational numbers, converting <br> between forms as appropriate, and |
| :--- | :--- |
| assessing the reasonableness of answers |  |
| using mental computation and estimation |  |
| strategies. |  |

Example

- If Sara makes $\$ 25$ an hour gets a $10 \%$ raise, she will make an additional $\frac{1}{10}$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$.


|  |  | meaning of the solution based on the situation. <br> - Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. | the learning objective. <br> - Students should use the properties of equality to solve for the value of a variable. |  | problem situatio another opportu student practice rational includin integers, positive negative fraction decimal number | This is <br> ty for o sing umbers <br> and <br> n <br> and | determine the number of notebooks Vicky bought. <br> - Write an equation that can be used to find the number of notebooks Vicky bought. Use the variable $v$ for the number of notebooks. Solve the equation. Explain the similarities and differences between finding the number of notebooks Vicky bought with and without a variable, paying attention to the sequence of your operations. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7.PAR.3.2 | Construct algebraic inequalities to solve problems, leading to inequalities of the form $p x \pm q>r$, $p x \pm q<r, p x \pm q \leq r$, or $p x \pm q \geq r$, where $p, q$, and $r$ are specific rational numbers. Graph and interpret the solution based on the realistic situation that the inequalities represent. | Strategies and Methods <br> - Students should be able to represent relationships in various authentic, mathematical situations with inequalities involving variables and positive and negative rational numbers. <br> - Students should be able to fluently solve inequalities of the specified forms. To achieve fluency, students should be able to choose flexibly among methods and strategies to solve mathematical problems accurately and efficiently. <br> - Students should use the properties of inequality to solve for the value of a variable. <br> - When identifying a specific value for $p, q$, and $r$, any rational number can be used. <br> - Students should be able to graph and interpret the solution of an inequality used as a model to explain real phenomena. |  |  |  | Example <br> - As a salesperson, you are paid \$50 per week plus \$3 per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make and describe the solutions. |  |
| 7.PAR.4: Recognize proportional relationships in relevant, mathematical problems; represent, solve, and explain these relationships with tables, graphs, and equations. |  |  |  |  |  |  |  |
| Expectations |  | Evidence of Student Learning <br> (not all inclusive; see Grade Level Overview for more details) |  |  |  |  |  |
| 7.PAR.4.1 | Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units presented in realistic problems. | Strategies and Methods <br> - Students should be able to solve problems involving unit rate presented in practical, everyday situations. |  | Example <br> - If a person walks $\frac{1}{2}$ mile in each $\frac{1}{4}$ hour, compute the unit rate as the complex fraction $\left(\frac{1}{2}\right) /\left(\frac{1}{4}\right)$ miles per hour, equivalently 2 miles per hour. |  |  |  |


| 7.PAR.4.2 | Determine the unit rate (constant of proportionality) in tables, graphs (1, r), equations, diagrams, and verbal descriptions of proportional relationships to solve realistic problems. | Age/Developmentally Appropriate <br> - In seventh grade, students are expected to understand that unit rate and constant of proportionality are the same. | Examples <br> - Jennifer rides on a train for 6 hours and travels 360 miles. How many miles per hour does she travel? <br> - Mary deposits \$115 into her bank account every month, represented by the equation $\mathrm{d}=115 \mathrm{~m}$. Identify the unit rate from this situation. |  |
| :---: | :---: | :---: | :---: | :---: |
| 7.PAR.4.3 | Determine whether two quantities presented in authentic problems are in a proportional relationship. | Strategies and Methods <br> - Students should be able to analyze and make decisions about relationships using proportional reasoning strategies, which may include but not limited to graphing on a coordinate plane and/or observing whether a graph is a straight line passing through the origin. | Examples <br> - If Tina uses 2 eggs to make 6 pancakes and Allison uses 4 eggs to make 12 pancakes, is this proportional? <br> - Jane runs 12 miles in 2.5 hours. Sarah runs 14 miles 3.5 hours. Are Jane and Sarah running at the same rate? Justify your answer. |  |
| 7.PAR.4.4 | Identify, represent, and use proportional relationships. | Strategies and Methods <br> - Student should be able to identify, represent, and use proportional relationships between quantities using verbal descriptions, tables of values, equations, and graphs to model applicable, mathematical problems: translate from one representation to another. <br> - Students should be able to model authentic, mathematical relationships involving constant rates where the initial condition starts at 0 using tables of values and graphs. <br> - Students should be able to represent proportional relationships using equations. | Example <br> - If the total cost, t , is proportional to the number, n , of items purchased at a constant price, $p$, the relationship between the total cost and the number of items can be expressed as $t=n p$. |  |
| 7.PAR.4.5 | Use context to explain what a point ( $x, y$ ) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where $r$ is the unit rate. | Example <br> - Erik feeds stray cats near his house. A graph shows different amounts of cat food he puts out based on the number of cats near his house. Erik graphs point $P$ to represent the unit rate. What does point $P$ mean in terms of the situation? Cups of cat food per cat. |  |  |
| 7.PAR.4.6 | Solve everyday problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale. | Strategies and Methods <br> - Students should have opportunities to use proportional reasoning to compute unknown lengths by setting up proportions in tables or equations, or they can reason about how the lengths compare multiplicatively. <br> - Students should be able to determine the dimensions of figures when given a scale and identify the impact of a scale on actual length (one-dimension) and area (two-dimensions). Students should be able to identify the scale factor given two figures. |  | Fundamentals <br> - Students should be given opportunities to explore the concept of similarity informally when learning about scale drawings of geometric figures. They should be able to make informal connections between scale drawings and similarity. |


|  |  | - Using a given scale drawing, students should be able to reproduce the drawing at a different scale. Students should understand that the lengths will change by a factor equal to the product of the magnitude of the two size transformations. <br> - Students should be given opportunities to explore the concept of similarity by exploring the congruence of corresponding angles and the proportions of corresponding side lengths of geometric figures using hands-on, concrete tools to understand similarity (i.e., patty paper, geometric software). |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7.PAR.4.7 | Use similar triangles to explain why the slope, $m$, is the same between any two distinct points on a nonvertical line in the coordinate plane. | Strategies and Method <br> - Students should be able to use proportional reasoning to explain why the slope, $m$, is the same between any two distinct points. |  |  |  |  |
| 7.PAR.4.8 | Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. | Fundamentals <br> - Students should demonstrate a conceptual understanding of slope. <br> - Students should be able to use graphical reasoning to represent proportional relationships. The proportional relationships explored by students should represent practical, realistic situations. | Examples <br> - Compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed. <br> - Mark was looking to fertilize his lawn, which is 432 sq. ft. He read the packages of 2 different fertilizer bags to see how much should be used. Bag A stated 2 ounces per 4 square feet and Bag $B$ can be represented using the table below: <br> What is the unit rate for each bag? Which bag should Mark purchase for his lawn? Why? |  |  |  |
| 7.PAR.4.9 | Use proportional relationships to solve multi-step ratio and percent problems presented in applicable situations. | Strategies and Methods <br> - Students may use flexible strategies such as a + $0.05 \mathrm{a}=1.05 \mathrm{a}$ with the understanding that adding a $5 \%$ tax to a total is the same as multiplying the total by 1.05. | Terminology <br> - Simple interest - a quick and easy method of calculating the interest charge on a loan. Simple interest is determined by multiplying the daily interest rate by the principal by the number of days that elapse between payments. Simple Interest = (principal) * (rate) * (\# of periods) <br> - Tax - money that people must pay to the government <br> - Markups and markdowns - increase and decrease in the amount of a quantity <br> - Gratuities - a tip given to a waiter, taxicab driver, etc. <br> - Commissions - a fee paid to an agent as compensation for completing a transaction |  |  |  |
| 7.PAR.4.10 | Predict characteristics of a population by examining the characteristics of a representative sample. Recognize the potential limitations and scope of the sample to the population. | Strategies and Methods <br> - Students can generate questions about things they notice and wonder from a relevant situation. Questions posed should be ones that requires data that will vary. <br> - Students should have opportunities to create and answer statistical investigative questions about a population by collecting data from a representative sample, using random sampling techniques to collect the data. <br> - Students should be able to create a statistical investigative question that can be answered by gathering data from practical situations and determine strategies for gathering data to answer the statistical investigative question. <br> - Potential limitations may include how the sample was selected and/or how the questions were asked. |  |  |  |  |


| 7.PAR.4.11 |
| :--- |
|  |
| 7.PAR.4.12 |
|  |
|  |
|  |

Analyze sampling methods and conclude that random sampling produces and supports valid inferences.
Use data from repeated random samples to evaluate how much a sample mean is expected to vary from a population mean. Simulate multiple samples of the same size.

## Strategies and Methods

- Students should have opportunities to critique examples of sampling techniques.
- Students should conclude when conditions of sampling methods may be biased, random, and not representative of the population.


## Fundamentals

- Students should use sample data collected to draw inferences.


## Examples

- Estimate the mean word length in a book by randomly sampling words from the book. Gauge how far off the estimate is from the actual mean.
- Predict the winner of a school election based on randomly sampled survey data. Gauge how far off the prediction might be.

GEOMETRIC \& SPATIAL REASONING - vertical, adjacent, complementary, and supplementary angles, circumference and area of circles, area and surface area, volume of cubes, right prisms, and cylinders
7.GSR.5: Solve practical problems involving angle measurement, circles, area of circles, surface area of prisms and cylinders, and volume of cylinders and prisms composed of cubes and right prisms.

Expectations

| 7.GSR.5.1 | Measure angles in whole non- <br> standard units. |
| :--- | :--- |

7.GSR.5.2 $\quad$ Measure angles in whole number degrees using a protractor.

Evidence of Student Learning
(not all inclusive; see Grade Level Overview for more details)

## Fundamentals

- Students should be able to recognize angles as geometric shapes formed when two rays share a common endpoint. In previous grades, students learned to draw and measure right, acute, and obtuse angles.
- To understand measurement, students should measure in non-standard units, such as unit angles or wedges, before being introduced to tools with abstract units such as degrees.
- Students should also be able to explore this learning objective by investigating angles within circles.


## Age/Developmentally

 Appropriate- Students should be able to use a $180^{\circ}$ protractor to draw or measure an angle to the nearest whole degree.


## Fundamentals

- In previous grades, students measured angles in reference to a circle with the center at the common endpoint of two rays. They should be able to use this knowledge to determine an angle's measure in relation to the 360

Strategies and Methods

- Students should be able to use hand-held and virtual protractors.
- Student should be able to use angle measurement tools that help them connect non-standard units (wedges, unit angles, etc.) to standard units of angle measurement (degrees).
- Fold a circle of patty paper or waxed paper in half four times to create an angle measuring tool with 16 wedges. This protractor can be used to determine the number of units (wedges) in an angle.


## Examples

- Students may be given angles to find precise measurements of angles. Here is an example of how students may use a protractor and measurement reasoning to determine precise angle measurements.

|  |  | degrees in a circle through division or as a missing factor problem. |  | Sample student response: <br> The angle measures 130 degrees. |
| :---: | :---: | :---: | :---: | :---: |
| 7.GSR.5.3 | Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve equations for an unknown angle in a figure. | Age and Developmentally Appropriate <br> - Students should be able to use a $180^{\circ}$ protractor to draw or measure an angle to the nearest whole degree to write and solve equations. <br> - Reflex angles are not an expectation at this grade level. | Fundamentals <br> - In previous grades, students have studied angles by type according to size: acute, obtuse, and right, and their role as an attribute in polygons. Now angles are considered based upon the special relationships that exist among them: supplementary, complementary, vertical, and adjacent angles. <br> - Students should be able to use relationships to write and solve equations for multi-step problems. | Terminology <br> - Supplementary angles - two angles add up to 180 degrees <br> - Complementary angles - two angles add up to 90 degrees <br> - Vertical angles - angles opposite each other when two lines intersect. <br> - Adjacent angles - Two angles that have a common side and a common vertex (corner point), and do not overlap. |
| 7.GSR.5.4 | Explore and describe the relationship between pi, radius, diameter, circumference, and area of a circle to derive the formulas for the circumference and area of a circle. | Strategies and Methods <br> - Students should use proportional reasoning to explain the relationship between the diameter and circumference of a circle and that the unit rate (constant of proportionality) is $\pi$ in order to derive the formulas for the circumference and area of a circle. | Age/Develo Appropriat | logy <br> cial Note: The terms pi, radius, diameter, and umference are new academic vocabulary for ents. <br> The ratio of a circle's circumference to its meter. <br> dius - The distance from the center to the umference of a circle. <br> meter - The distance from one point on a circle ugh the center to another point on the circle. umference - The distance around the edge of a e. |
| 7.GSR.5.5 | Given the formula for the area and circumference of a circle, solve problems that exist in everyday life. | Age/Developmentally Appropriate <br> - Students should be given the formula for area and circumference of a circle when solving problems. | Example <br> - The seventh-grade class is building a mini golf game for the school carnival. The end of the putting green will be a circle. If the circle is 10 feet in diameter, how many square feet of grass carpet will they need to buy to cover the circle? How might you communicate this information to the salesperson to make sure you receive a piece of carpet that is the correct size: $A=\pi r^{2}$ OR $C=2 \pi r$ ? |  |


| 7.GSR.5.6 | Solve realistic problems involving surface area of right prisms and cylinders. | Age/Developmentally Appropriate <br> - Students should solve problems involving surface areas of prisms with triangles, rectangles, and other polygons as bases. <br> - Students are not expected to memorize formulas to solve problems involving surface area. | Strategies and Methods <br> Students should have an opportunity to solve single to multi-step authentic, mathematical problems. Students should have opportunities to apply knowledge of the area of triangles, rectangles, and other polygons to solve problems involving surface area of prisms. <br> Students should have opportunities to discover the surface area of a cylinder by decomposing the figure into circles and rectangles. <br> Students should use geometric and spatial reasoning to solve problems involving surface area. | Terminology <br> - Cylinder - any three-dimensional figure with two congruent, opposite faces called bases connected by adjacent curved or flat faces (bases can include circles, triangles, rectangles, or other shapes). The bases can be connected by two lines that are parallel to each other. <br> - Right prism - any threedimensional figure with two polygons for bases that are opposite, congruent, and perpendicular to the adjacent faces <br> - The inclusive definition of a cylinder classifies prisms as special types of cylinders used to derive formulas that apply to all types of cylinders and prisms alike (Van de Walle, Karp, \& Bay-Williams, 2010). <br> - All prisms are cylinders, but not all cylinders are prisms (Van de Walle, Karp, Lovett \& Bay-Williams, 2010). |  | Examp | - Cole is planning to cover a cylindrical drum in leather. The diameter of the drum is 10 inches, and its height is 16 inches. What is the minimum amount of leather Cole will need? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7.GSR.5.7 | Describe the two-dimensional figures (cross sections) that result from slicing three-dimensional figures, as in the plane sections of right rectangular prisms, right rectangular pyramids, cones, cylinders, and spheres. | Age/Developmentally Appropriate <br> - Cross-sections should be limited to horizontal and vertical slices. |  Strategies and Methods <br> $\bullet \quad$ <br> Students should have <br> opportunities to explor <br> of right rectangular pris <br> rectangular pyramids, c <br> cylinders, and spheres t <br> be sliced.  <br> Students should determ <br> different planes that cat <br> created with the slices.  | $\left.\begin{array}{l\|l} & \begin{array}{l}\text { Fundamentals } \\ \text { - } \\ \text { Students should conclude } \\ \text { the resulting two- } \\ \text { dimensional shape created }\end{array} \\ \text { after the slice is not the } \\ \text { entire three-dimensional } \\ \text { shape that remains. }\end{array}\right\}$In seventh grade, cross <br> sections should be limited to <br> horizontal and vertical slices. |  |  | Terminology <br> - Prism - a solid figure that has the same cross section all along its length |
| 7.GSR.5.8 | Explore volume as a measurable attribute of cylinders and right prisms. Find the volume of these geometric figures using concrete problems. | Strategies and Methods <br> - Students should apply knowledge of cross sections as a strategy for revealing a base of cylinders including right prisms. | Terminology <br> - Cylinder - any threedimensional figure with two congruent, opposite faces called bases connected by adjacent curved or flat | Age/Developmentally Appropriate <br> - Cylinders explored in Grade 7 should be limited to right circular | Examples <br> - Identical toy building cubes were used to make the stacks shown below. |  |  |


|  |  | - Students should apply reasoning about the volume of rectangular prisms to explore the volume of cylinders and other three-dimensional objects composed of cubes and right prisms. <br> - Students should apply their knowledge of area of a circle when finding the volume of a cylinder. <br> - Students should use the formula Volume = area of the base times height or $\mathrm{V}=\mathrm{B} \times \mathrm{h}$ to find the volume of a cylinder. | faces (bases can include circles, triangles, rectangles, or other shapes). The bases can be connected by two lines that are parallel to each other. <br> - Right prism - any threedimensional figure with two polygons for bases that are opposite, congruent, and perpendicular to the adjacent faces. <br> - The inclusive definition of a cylinder classifies prisms as special types of cylinders used to derive formulas that apply to all types of cylinders and prisms alike. (Van de Walle, et.al., 2010) <br> - All prisms are cylinders, but not all cylinders are prisms. (Van de Walle, Karp, Lovett \& BayWilliams, 2010) <br> - The formula for volume used in Grade 7 is $V=B$ (area of the base) $\times \mathrm{h}$ (height), where $\mathrm{B}=$ area of the base, $\mathrm{h}=$ height. | cylinders. Right circular cylinders are threedimensional solid figures with two congruent, parallel, circular bases that are connected by a curved face that is perpendicular to each base. <br> - Students should explore experimentally and conceptually the hierarchy of cylinders and prisms. | Which stack takes up the least space? Which stack takes up the most space? Order the stacks from the one that takes up the least space to the one that takes up the most space. <br> - A farmer is storing ground corn in a silo during the winter months. What is the maximum capacity of the cylindrical part of each silo that has a 20 -foot diameter and a 55 -foot height for which the farmer can store the ground corn? |
| :---: | :---: | :---: | :---: | :---: | :---: |


| PROBABILITY REASONING - likelihood, theoretical and experimental probability |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7.PR.6: Using mathematical reasoning, investigate chance processes and develop, evaluate, and use probability models to find probabilities of simple events presented in authentic situations. |  |  |  |  |  |
|  | Expectations | Evidence of Student Learning <br> (not all inclusive; see Grade Level Overview for more details) |  |  |  |
| 7.PR.6.1 | Represent the probability of a chance event as a number between 0 and 1 that expresses the likelihood of the event occurring. Describe that a probability near 0 indicates an unlikely event, a probability around $\frac{1}{2}$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event. | Strategies and Methods <br> - Students should be able to represent the probability as a fraction, decimal numbers, or percentage. |  | Terminology <br> - Descriptions may include impossible, unlikely, equally likely, likely, and certain. |  |
| 7.PR.6.2 | Approximate the probability of a chance event by collecting data on an event and observing its long-run relative frequency will approach the theoretical probability. | Strategies and Methods <br> - Students should be able to predict the approximate, relative frequency given the theoretical probability. |  | Example <br> - When rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times. |  |
| 7.PR.6.3 | Develop a probability model and use it to find probabilities of simple events. Compare experimental and theoretical probabilities of events. If the probabilities are not close, explain possible sources of the discrepancy. | Strategies and Methods <br> - Probability models may include various random generation devices including, but not limited to, bag pulls, spinners, number cubes, coin toss, and colored chips. <br> - Students should have multiple opportunities to collect data using physical objects, graphing calculators, or web-based simulations. |  | Example <br> - Kim calculates the probability of landing on heads when tossing a coin to be $50 \%$. She uses this to predict that when Tiffany tosses a coin 20 times, the coin will land on heads 10 times. When Tiffany performed the experiment, the coin landed on heads 7 times. Explain possible reasons why Kim's prediction and Tiffany's results do not match. |  |
| 7.PR.6.4 | Develop a uniform probability model by assigning equal probability to all outcomes and use the model to determine probabilities of events. | Example <br> - If a student is selected at random from a class, find the probability a student with long hair will be selected. |  |  |  |
| 7.PR.6.5 | Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. | Terminology <br> - Uniform probability models are those where the likelihood of each outcome is equal. | Examples <br> - Find the approximate probability of each outcome in a spinner with unequal sections. <br> - Find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies? |  |  |
| 7.PR.6.6 | Use appropriate graphical displays and numerical summaries from data distributions with categorical or quantitative (numerical) variables as probability models to draw | Strategies and Methods <br> - Students should use side by side bar graphs or segmented bar graphs to compare categorical data distributions | Age/Developmentally Appropriate <br> - Limit category counts to be less than or equal to ten. |  | Example <br> - Compare the heights of the basketball and the tennis teams. |


$7^{\text {th }}$ Grade: Create statistical investigative questions that can be answered using quantitative data, collect data through random sampling to make inferences about population distributions using data distributions, and interpret data to answer statistical investigative questions.

| Ask | Collect | Analyze | Interpret |
| :---: | :---: | :---: | :---: |
| Create a statistical investigative question that can be answered by gathering data from real situations and determine strategies for gathering data to answer the statistical investigative question. | Use statistical reasoning and methods to predict characteristics of a population by examining the characteristics of a representative sample. Recognize the potential limitations and scope of the sample to the population. <br> Analyze sampling methods and conclude that random sampling produces and supports valid inferences. | Use data from repeated random samples to evaluate how much a sample mean is expected to vary from a population mean. Simulate multiple samples of the same size. | Use appropriate graphical displays and numerical summaries from data distributions with categorical or quantitative (numerical) variables to draw informal inferences about two samples or populations. |

Instructional Supports

- Students should have opportunities to create and answer statistical investigative questions about a population by collecting data from a representative sample, using random sampling techniques to collect the data.
- Students should have opportunities to critique examples of sampling techniques. Students should conclude when conditions of sampling methods may be biased, random, and not representative of the population. Students should use sample data collected to draw inferences.
- $\quad$ Students should use side by side bar graphs or segmented bar graphs to compare categorical data distributions of samples from two populations. Students should compare data of two samples or populations displayed in box plots and dot plots to make inferences.
- Students should be able to draw inferences using measures of central tendency (mean, median, mode) and/or variability (range, mean absolute deviation and interquartile range) from random samples. Conclusions should be made related to a population, using a random sample, by describing a distribution using measures of central tendency (mean, median, mode) and/or variability (range, mean absolute deviation, and interquartile range).
$8^{\text {th }}$ Grade: Create statistical investigative questions that can be answered using quantitative data. Collect, analyze, and interpret patterns of bivariate data and interpret linear models to answer statistical questions and solve real problems.

| Ask | Collect | Analyze | Interpret |
| :--- | :--- | :--- | :--- |
| Create a |  |  |  |
| statistical |  |  |  |
| investigative | Use the equation <br> of a linear model <br> to solve problems <br> question that can <br> be answered by <br> gathering data <br> from real <br> situations and <br> determine <br> strategies for <br> gathering data to <br> measurement <br> data, interpreting <br> answer the <br> statistical <br> investigative | Construct and <br> interpret scatter <br> plots for bivariate <br> intercepts. | quantitative data to <br> investigate patterns <br> of association <br> between two |
| question. | quantities. | Show that straight lines are widely used to <br> model relationships between two <br> quantitative variables. For scatter plots that <br> suggest a linear association, visually fit a <br> straight line, and informally assess the <br> model fit by judging the closeness of the <br> data points to the line of best fit. |  |
|  |  | Explain the meaning <br> of the predicted <br> slope (rate of <br> change) and the <br> predicted intercept <br> (constant term) of a <br> linear model in the <br> context of the data. | Use the equation of a linear model to solve <br> problems in the context of bivariate <br> measurement data, interpreting the slope <br> and intercepts. |

## Instructional Supports

- Students should be able to use statistical reasoning to describe patterns of association, such as clustering, outliers, positive or negative association, linear association, and nonlinear association through the analysis of data presented in multiple ways.
- Students should be given opportunities to analyze the data distribution displayed graphically to answer the statistical investigative question generated from a real situation.
- $\quad$ Students should solve practical, linear problems involving situations using bivariate quantitative data. A linear model shows the relationship between two variables in a data set, such as lines of best fit. Students should discover the line of best fit as the one that comes closest to most of the data points and shows the linear relationship between two variables in a data set.
- It is important to indicate 'predicted' slope to indicate this is a probabilistic interpretation in context, and not deterministic.


## COMPUTATIONAL STRATEGIES FOR WHOLE NUMBERS

Georgia Department of Education

## Mathematics Place-Value Strategies and US Traditional Algorithms

Specific mathematics strategies for teaching and learning are not mandated by the Georgia Department of Education or assessed on state or federally mandated tests. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and-makes sense to them. It is critical that teachers and parents remain partners to help each child grow to become a mathematically literate citizen. These standards preserve and affirm local control and flexibility.

In mathematics, the emphasis is on the reasoning and thinking about the quantities within mathematical contexts. Algorithms, tape diagrams (bar models), and number line representations are a few examples of ways that students communicate their strategic thinking in a written form.


It is important to note that the examples of strategies provided in the tables are not all inclusive. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and makes sense to them.

## Subtraction Example: 2145-178



Number Line Representation:


It is important to note that the examples of strategies provided in the tables are not all inclusive. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and makes sense to them.

| Multiplication Example: $25 \times 24$ |  |  |
| :---: | :---: | :---: |
| US Traditional Algorithm: $\begin{array}{r} 1_{2} \\ 25 \\ \times \quad 24 \\ \hline \\ \hline \quad 100 \\ +\quad 500 \\ \hline 600 \end{array}$ | Description: <br> As students make sense of and use multiplication strategies and algorithms, it is important for them to demonstrate a deep understanding of the relationship between the quantities presented in the mathematics number sentence and to attend to precision in their explanations. Students are encouraged to use strategies such as partial products, friendly numbers, and a combination of known facts to determine solutions to new problems. It is also important for students to maintain the ability to choose which part-whole strategy is best to communicate their mathematical thinking. Flexibility in thinking is key! | Place Value Algorithm: $\begin{array}{rrl}  & 25 \\ \times & 24 \\ \hline & 400 & \\ \hline & (20 \times 20) \\ + & 100 & (20 \times 5) \\ + & 80 & (4 \times 20) \\ + & 20 & (4 \times 5) \\ \cline { 1 - 2 } & 600 & \end{array}$ |
| Area Representation (Part | Products): $(5 \times 4)+(5 \times 20)+(20 \times 4)+(20 \times 20)=(25 \times 24)$ |  |

It is important to note that the examples of strategies provided in the tables are not all inclusive. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and makes sense to them.

## Division Example: $1917 \div 9$



## Number Line Representation:



$$
200+10+3=213
$$

It is important to note that the examples of strategies provided in the tables are not all inclusive. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and makes sense to them.

