$8^{\text {th }}$ Grade Mathematics Teaching \& Learning Framework

$8^{\text {th }}$ Grade Mathematics Teaching \& Learning Framework							
Semester 1				Semester 2			
Unit 1 6 weeks	Unit 2A 2 weeks	Unit 2B 7 weeks	Unit 3 3 weeks	Unit 4 5 weeks	Unit 5 6 weeks	Unit 6 4 weeks	Unit 7 3 weeks
Investigating Linear Expressions, Equations, and Inequalities in One Variable 8.PAR. 3	$\begin{gathered} \hline \text { Modeling } \\ \text { Linear } \\ \text { Relationship } \\ s \text { sand } \\ \text { Functions } \\ \text { 8.FGR. } 5 \end{gathered}$	Modeling Linear Relationships and Functions 8.PAR. 4 8.FGR. 5	Investigating Data \& Statistical Reasoning 8.FGR. 6	Real-Life Phenomena Explored Through Systems of Linear Equations 8.FGR. 7	Irrationals, Integer Exponents and Scientific Notation 8.NR.1-2	Exploring Geometric Relationships 8.GSR. 8	Culminating Capstone Unit
8.PAR.3.6 (Literal equations) 8.PAR.3.1 (Expressions) 8.PAR.3.2 (Solving equations) 8.PAR.3.3 (Create and solve equations and inequalities including compound) 8.PAR.3.4 (Justify solving equations with properties) 8.PAR.3.5 (Solve equations and inequalities with coefficients as letters)	8.FGR.5.1 (Functions) 8.FGR. 5.2 (Linear and non-linear functions)	8.PAR.4.1 $(y=m x+b$ and $y=m x)$ 8.PAR.4.2 (Graphing lines) 8.FGR.5.3 (Domain) 8.FGR.5.4 (Compare properties) 8.FGR.5.5 (Equation forms) 8.FGR.5.6 (Equivalent forms) 8.FGR.5.7 (Construct a linear function) 8.FGR.5.8 (Rate of change and initial value) 8.FGR.5.9 (Characteristics)	8.FGR.6.1 (Line of best fit) 8.FGR.6.2 (Solving problems using linear model equation) 8.FGR.6.3 (Meaning of predicted slope and intercept of linear model) 8.FGR.6.4 (Line of best fit questions and inferences)	8.FGR.7.1 (Interpret and solve problems with two equations and two variables) 8.FGR.7.2 (Intersection points of linear equations) 8.FGR.7.3 (Solve systems by graphing) 8.FGR.7.4 (Solve systems algebraically) 8.FGR.7.5 (Parallel and perpendicular line equations)	8.NR.1.1 (Rational and irrational numbers) 8.NR.1.2 (Locate irrational numbers on number line) 8.NR.2.1 (Integer exponents) 8.NR.2.2 (Square roots and cube roots) 8.NR.2.3 (Scientific notation) 8.NR.2.4 (Add, subtract, multiply, and divide with scientific notation numbers)	8.GSR.8.1 (Proof and converse of Pythagorean Theorem) 8.GSR.8.2 (Apply Pythagorean Theorem) 8.GSR.8.3 (Distance between two points on graph) 8.GSR.8.4 (Volume of cone, cylinder, and sphere)	All Standards
Units contain tasks that depend upon the concepts addressed in earlier units. Mathematical standards are interwoven and should be addressed throughout the year in as many different units and tasks as possible in order to stress the natural connections that exist among mathematical topics.							
The Framework for Statistical Reasoning, Mathematical Modeling Framework, and the K-12 Mathematical Practices should be taught throughout the units.							
Key for Course Standards: PAR: Patterning \& Algebraic Reasoning, FGR: Functional \& Graphical Reasoning, GSR: Geometric \& Spatial Reasoning, NR: Numerical Reasoning							

GEORGIA'S K-12 MATHEMATICS STANDARDS 2021

Governor Kemp and Superintendent Woods are committed to the best set of academic standards for Georgia's students - laying a strong foundation of the fundamentals, ensuring age- and developmentally appropriate concepts and content, providing instructional supports to set our teachers up for success, protecting and affirming local control and flexibility regarding the use of mathematical strategies and methods, and preparing students for life. These Georgia-owned and Georgia-grown standards leverage the insight, expertise, experience, and efforts of thousands of Georgians to deliver the very best educational experience for Georgia's 1.7 million students.

In August 2019, Governor Brian Kemp and State School Superintendent Richard Woods announced the review and revision of Georgia's K-12 mathematics standards. Georgians have been engaged throughout the standards review and revision process through public surveys and working groups. In addition to educator working groups, surveys, and the Academic Review Committee, Governor Kemp announced a new way for Georgians to provide input on the standards: the Citizens Review Committee, a group composed of students, parents, business and community leaders, and concerned citizens from across the state. Together, these efforts were undertaken to ensure Georgians will have buy-in and faith in the process and product.

The Citizens Review Committee provided a charge and recommendations to the working groups of educators who came together to craft the standards, ensuring the result would be usable and friendly for parents and students in addition to educators. More than 14,000 Georgians participated in the state's public survey from July through September 2019, providing additional feedback for educators to review. The process of writing the standards involved more than 200 mathematics educators -- from beginning to veteran teachers, representing rural, suburban, and metro areas of our state.

Grade-level teams of mathematics teachers engaged in deep discussions; analyzed stakeholder feedback; reviewed every single standard, concept, and skill; and provided draft recommendations. To support fellow mathematics teachers, they also developed learning progressions to show when key concepts were introduced and how they progressed across grade levels, provided examples, and defined age/developmentally appropriate expectations.

These teachers reinforced that strategies and methods for solving mathematical problems are classroom decisions -- not state decisions -- and should be made with the best interest of the individual child in mind. These recommended revisions have been shared with the Academic Review Committee, which is composed of postsecondary partners, age/development experts, and business leaders, as well as the Citizens Review Committee, for final input and feedback.

Based on the recommendation of Superintendent Woods, the State Board of Education will vote to post the draft K-12 mathematics standards for public comment. Following public comment, the standards will be recommended for adoption, followed by a year of teacher training and professional learning prior to implementation.

Use of Mathematical Strategies and Methods \& Affirming Local Control

These standards preserve and affirm local control and flexibility regarding the use of the "standard algorithm" and other mathematical strategies and methods. Students have the right to use any strategy that produces accurate computations, makes sense, and is appropriate for their level of understanding.

Therefore, the wording of these standards allows for the "standard algorithm" as well as other cognitive strategies deemed developmentally appropriate for each grade level. Revised state tests will not measure the students' use of specific mathematical strategies and methods, only whether students understand the key mathematical skills and concepts in these standards.

Teachers are afforded the flexibility to support the individual needs of their students. It is critical that teachers and parents remain partners to help each child grow to become a mathematically literate citizen.

Georgia's K-12 Mathematics Standards - 2021
Mathematics Big Ideas and Learning Progressions, 6-8

Mathematics Big Ideas, 6-8

5	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	HS Algebra: Concepts \& Connections	HS Connections
MATHEMATICAL PRACTICES \& MODELING					
DATA \& STATISTICAL REASONING					
NUMERICAL REASONING (NR)					
PATTERNING \& ALGEBRAIC REASONING (PAR)					
GEOMETRIC \& SPATIAL REASONING (GSR)					
	PROBABILITY REASONING (PR)	PROBABILISTIC REASONING (PR)			

6-8 MATHEMATICS: LEARNING PROGRESSIONS

Key Concepts	5	6	7	8	HS Algebra: Concepts \& Connections	HS Geometry: Concepts \& Connections
NUMERICAL REASONING						
Numbers (rational numbers and irrational numbers)	- Multi-digit whole numbers - Fractions with unlike denominators - Fractions greater than 1 - Decimal numbers to thousandths - Powers of 10 to 10^{3}	- Rational numbers as a concept \circ Integers \circ Fractions \circ Decimal numbers	- All rational numbers - Simple probability	- All rational numbers - Scientific notation - Numerical expressions with integer exponents - Use appropriate counting strategies to approximate rational and irrational numbers (radicals) on a number line	- All rational numbers - Operations with radicals	- All numbers in The Real Number System
Computational Fluency	- Add \& subtract fractions with unlike denominators - Add and subtract decimal numbers to the hundredths place - Multiply \& divide multidigit whole numbers - Multiply fractions and whole numbers - Divide unit fractions and whole numbers - Reason about multiplying by a fraction >, <, or = 1	- All operations with whole numbers, fractions, and decimal numbers - Write \& evaluate numerical expressions - Convert fractions with denominators of $2,4,5$ and 10 to the decimal notation	- Operations with rational numbers - Rational numbers - Convert fractions with all denominators to decimal numbers	- Operations with scientific notation - Scientific notation in real situations seen in everyday life - Expressions with integer exponents	- Operations with real numbers (rational and irrational) - Multiplication of irrational numbers	
Comparisons	- Decimal fractions to thousandths place - Fractions greater than 1	- Integers - Unit rates - Ratios - Numerical data distributions - Measures of variation - Absolute value - Display and analyze categorical and quantitative (numerical) data	- Rational numbers - Probabilities - Random sampling	- Rational and irrational numbers (radicals) - Compare proportional relationships presented in different ways	- Rate of change (slope) - Intercept - Distributions of two or more data sets	

6-8 MATHEMATICS: LEARNING PROGRESSIONS

Key Concepts	5	6	7	8	HS Algebra: Concepts \& Connections	HS Geometry: Concepts \& Connections
PATTERNING \& ALGEBRAIC REASONING						
Patterns	- Generate two numerical patterns from a given rule - Identify relationships using a table	- Greatest common factor \& least common multiple	- Constant of proportionality	- Integer exponents - Perfect squares and perfect cubes	- Arithmetic sequences - Geometric sequences	
Expressions	Numerical Reasoning - Simple numerical expressions involving whole numbers with or without grouping symbols - Express fractions as division problems	- Write, analyze, and evaluate numerical and algebraic expressions - Identify, generate, and evaluate algebraic expressions - Identify like terms in an algebraic expression	- Add, subtract, factor \& expand linear expressions - Rewrite expressions - Fluency with combining like terms in an algebraic expression - Linear expressions with rational coefficients	- Expressions with integer exponents - Linear expressions - Operations with algebraic expressions	- Exponential expressions - Quadratic expressions	- Expressions of varying degrees - Add, subtract, multiply single variable polynomials - Adding, Subtracting and Multiplying Polynomials - Factoring and expanding polynomials
Variable Equations \& Inequalities		- Write and solve one-step equations \& inequalities	- Construct \& solve multi-step algebraic equations and inequalities	- Analyze and solve linear equations and inequalities	- Exponential equations - Quadratic equations - Equations of parallel and perpendicular lines - Analyze and solve linear inequalities	- Equations involving geometric measurement
Ratios \& Rates		Numerical Reasoning with ratios and rates: - Concept of ratio and rate - Equivalent ratios, percentages, unit rates - Convert within measurement systems	- Compute unit rates associated with ratios of fractions - Determine unit rates	- Interpret unit rate as the slope of a graph	- Convert units and rates given a conversion factor	- Side ratios of similar triangles - Trigonometric ratios
Proportional Relationships			- Use proportional relationships - Solve multi-step ratio and percent problems - Scale drawings of geometric figures - Use similar triangles to explain slope			
Graphing	- Plot order pairs in first quadrant	- Plot order pairs in all four quadrants - Show rational numbers on a number line - Draw polygons on a coordinate grid - Find the side length of a polygon graphed on the coordinate plane (same x - or y - coordinate)	- Proportional relationships	- Linear functions - Comparing linear and non-linear functions - Systems of linear equations (including parallel and perpendicular) - Linear inequalities - Analyze data distributions	- Linear functions with function notation - Exponential functions - Quadratic functions - Systems of linear inequalities	- Equations of circles in standard form

6-8 MATHEMATICS: LEARNING PROGRESSIONS						
Key Concepts	5	6	7	8	HS Algebra: Concepts \& Connections	HS Geometry: Concepts \& Connections
FUNCTIONAL \& GRAPHICAL REASONING						
Function Families				- Linear functions - Line of best fit	- Linear functions with function notation - Parent graphs of function families - Exponential functions - Quadratic functions	- Function notation to represent transformations
GEOMETRIC \& SPATIAL REASONING						
 Properties	- Classify polygons based on geometric properties		- Measure angles using non-standard and standard tools - Write \& solve equations using supplementary, complementary, vertical, and adjacent angles	- Introduction to Pythagorean Theorem and the converse		- Develop and use precise definitions to prove theorems and solve geometric problems - Prove slope criteria for parallel and perpendicular lines - Transform polygons using rotations, reflections, dilations, and translations. - Congruence and transformations - Triangle congruence - Use congruence to prove relationships in geometric figures - Similarity and dilations - Similar triangles - Use similarity to prove relationships in geometric figures - Formal proofs \& theorems about triangles - Trigonometric ratios (Sin, Cos, \& Tan)

6-8 MATHEMATICS: LEARNING PROGRESSIONS						
Key Concepts	5	6	7	8	HS Algebra: Concepts \& Connections	HS Geometry: Concepts \& Connections
GEOMETRIC \& SPATIAL REASONING (cont.)						
Geometric Measurement	- Volume of right rectangular prisms	- Area of triangles, quadrilaterals, and polygons - Surface area - Volume of right rectangular prisms with fractional edge lengths	- Relationship between parts of a circle - Area \& circumference of a circle - Area and surface area of figures decomposed into triangles, quadrilaterals \& circles - Volume of cubes, right prisms \& cylinders	- Pythagorean Theorem to determine distance between two points - Volume of cones, cylinders, and spheres	- Use distance formula, midpoint formula, and slope to calculate perimeter and area of triangles and quadrilaterals	- Volumes of prisms, cones, cylinders, pyramids, and spheres - Approximate volumes of irregular objects - Approximate density of irregular objects
PROBABILITY REASONING						
Probability			- Represent probability - Approximate probability - Develop probability models (uniform \& not uniform) - Find probabilities of simple events			- Categorical data \& two-way frequency tables - Interpret probabilities in context

$8^{\text {th }}$ Grade

The eight standards listed below are the key content competencies students will be expected to master in eighth grade. Additional clarity and details are provided through the classroom-level learning objectives and evidence of student learning details for each grade-level standard found on subsequent pages of this document. As teachers are planning instruction and assessing mastery of the content at the grade level, the focus should remain on the key competencies listed in the table below.

EIGHTH GRADE STANDARDS

8.MP: Display perseverance and patience in problem-solving. Demonstrate skills and strategies needed to succeed in mathematics, including critical thinking, reasoning, and effective collaboration and expression. Seek help and apply feedback. Set and monitor goals.
8.NR.1: Solve problems involving irrational numbers and rational approximations of irrational numbers to explain realistic applications.
8.NR.2: Solve problems involving radicals and integer exponents including relevant application situations; apply place value understanding with scientific notation and use scientific notation to explain real phenomena.
8.PAR.3: Create and interpret expressions within relevant situations. Create, interpret, and solve linear equations and linear inequalities in one variable to model and explain real phenomena.
8.PAR.4: Show and explain the connections between proportional and non-proportional relationships, lines, and linear equations; create and interpret graphical mathematical models and use the graphical, mathematical model to explain real phenomena represented in the graph.
8.FGR.5: Describe the properties of functions to define, evaluate, and compare relationships, and use functions and graphs of functions to model and explain real phenomena.
8.FGR.6: Solve practical, linear problems involving situations using bivariate quantitative data.
8.FGR.7: Justify and use various strategies to solve systems of linear equations to model and explain realistic phenomena.
8.GSR.8: Solve contextual, geometric problems involving the Pythagorean Theorem and the volume of geometric figures to explain real phenomena.

Georgia's K-12 Mathematics Standards - 2021 $8^{\text {TH }}$ Grade

NUMERICAL REASONING - rational and irrational numbers, decimal expansion, integer exponents, square and cube roots, scientific notation					
8.NR.1: Solve problems involving irrational numbers and rational approximations of irrational numbers to explain realistic applications.					
	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)			
8.NR.1.1	Distinguish between rational and irrational numbers using decimal expansion. Convert a decimal expansion which repeats eventually into a rational number.	Strategies and Methods - Students should be provided with experiences to use numerical reasoning when describing decimal expansions. - Students should be able to classify real numbers as rational or irrational. - Students should know that when a square root of a positive integer is not an integer, then it is irrational. - Students should use prior knowledge about converting fractions to decimals learned in $6^{\text {th }}$ and $7^{\text {th }}$ grade to connect changing decimal expansion of a repeating decimal into a fraction and a fraction into a repeating decimal. - Emphasis is placed on how all rational numbers can be written as an equivalent decimal. The end behavior of the decimal determines the classification of the number.	Age/Developmentally Appropriate - This specific example is limited to the tenths place; however, the concept for this grade level extends to the hundredths place.	Terminology - Rational numbers are those with decimal expansions that terminate in zeros or eventually repeat. - Irrational numbers are nonterminating, non-repeating decimals.	Example - Change $0 . \overline{4}$ to a fraction 1. Let $x=0.4444444$... 2. Multiply both sides so that the repeating digits will be in front of the decimal. In this example, one digit repeats so both sides are multiplied by 10, giving $10 x=4.4444444 \ldots$ 3. Subtract the original equation from the new equation. $\begin{aligned} & 10 x=4.4444444 \ldots \\ & x=0.44444 \ldots \\ & 9 x=4 \end{aligned}$ 4. Solve the equation to determine the equivalent fraction. $\begin{aligned} & 9 x=4 \\ & x=4 / 9 \end{aligned}$
8.NR.1.2	Approximate irrational numbers to compare the size of irrational numbers, locate them approximately on a number line, and estimate the value of expressions.	Strategies and Methods - Students should use visual models and numerical reasoning to approximate irrational numbers.	Example - By estimatin 4 and 5 and	decimal expansi er to 4 on a numb	$\sqrt{17}$, show that $\sqrt{17}$ is between

8.NR.2: Solve problems involving radicals and integer exponents including relevant application situations; apply place value understanding with scientific notation and use scientific notation to explain real phenomena.

	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)				
8.NR.2.1	Apply the properties of integer exponents to generate equivalent numerical expressions.	Strategies and Methods - Students should use numerical reasoning to identify patterns associated with properties of integer exponents. - The following properties should be addressed: product rule, quotient rule, power rule, power of product rule, power of a quotient rule, zero exponent rule, and negative exponent rule.				Example
8.NR.2.2	Use square root and cube root symbols to represent solutions to equations. Recognize that $x^{2}=p$ (where p is a positive rational number and $\|x\| \leq 25$) has two solutions and x^{3} $=p$ (where p is a negative or positive rational number and $\|x\| \leq 10$) has one solution. Evaluate square roots of perfect squares ≤ 625 and cube roots of perfect cubes ≥-1000 and ≤ 1000.	Strategies and Methods - Students should be able to find patterns within the list of square numbers and then with cube numbers.\quadFundame - Equa inclu Students should be able to recognize that squaring a number and taking the square root of a number are inverse operations; likewise, cubing a number and taking the cube root are inverse operations.			Example - $\sqrt{64}=\sqrt{8^{2}}=8$ and $\sqrt[3]{\left(5^{3}\right)}=5$. Since \sqrt{p} is defined to mean the positive solution to the equation $x^{2}=p$ (when it exists). It is not mathematically correct to say $\sqrt{64}= \pm 8$ (as is a common misconception). In describing the solutions to $x^{2}=64$, students should write $x= \pm \sqrt{64}= \pm 8$.	
8.NR.2.3	Use numbers expressed in scientific notation to estimate very large or very small quantities, and to express how many times as much one is than the other.	Strategies and Methods - Students should use the magnitude of quantities to compare numbers written in scientific notation to determine how many times larger (or smaller) one number written in scientific notation is than another. - Students should have opportunities to compare numbers written in scientific notation in contextual, mathematical problems, including scientific situations.			Example - Estimate the population of the United States as 3×10^{8} and the population of the world as 7×10^{9} and determine that the world population is more than 20 times larger.	
8.NR.2.4	Add, subtract, multiply and divide numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Interpret scientific notation that has been generated by technology (e.g., calculators or online technology tools).	Fundamentals - Students should use place value reasoning which supports the understanding of digits shifting to the left or right when multiplied by a power of 10 .		Strategies and Methods - Students combine knowledge of integer exponent rules and scientific notation to perform operations with numbers expressed in scientific notation. - Students should solve realistic problems involving scientific notation.		

PATTERNING \& ALGEBRAIC REASONING - expressions, linear equations, and inequalities			
8.PAR.3: Create and interpret expressions within relevant situations. Create, interpret, and solve linear equations and linear inequalities in one variable to model and explain real phenomena.			
	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)	
8.PAR.3.1	Interpret expressions and parts of an expression, in context, by utilizing formulas or expressions with multiple terms and/or factors.	Fundamentals Students should build on their prior knowledge of understanding the parts of an expression to extend their understanding to more complex expressions with multiple terms and/or factors.	inology Parts of an expression include terms, factors, coefficients, and operations.
8.PAR.3.2	Describe and solve linear equations in one variable with one solution ($x=a$), infinitely many solutions $(a=a)$, or no solutions ($a=$ b). Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers).	Strategies and Methods - Students should use algebraic reasoning in their descriptions of the - Building upon skills from Grade 7, students combine like terms on the distributive property to simplify the equation when solving. Empha coefficients. Solutions of certain equations may elicit infinitely man	lutions to linear equations. same side of the equal sign and use the in this standard is also on using rational or no solutions.
8.PAR.3.3	Create and solve linear equations and inequalities in one variable within a relevant application.	Strategies and Methods - Students should use algebraic reasoning in their descriptions of the - Include linear equations and inequalities with rational number coefficia expanding expressions using the distributive property and collecting	olutions to linear equations. fients and whose solutions require like terms.
8.PAR.3.4	Using algebraic properties and the properties of real numbers, justify the steps of a one-solution equation or inequality.	Strategies and Methods - Students should justify their own steps, or if given two or more progression from one step to the next using properties.	steps of an equation, explain the
8.PAR.3.5	Solve linear equations and inequalities in one variable with coefficients represented by letters and explain the solution based on the contextual, mathematical situation.	Strategies and Methods - Students should use algebraic reasoning to solve linear equations and inequalities in one variable.	Example - Given $\mathrm{ax}+3=7$, solve for x .
8.PAR.3.6	Use algebraic reasoning to fluently manipulate linear and literal equations expressed in various forms to solve relevant, mathematical problems.	Strategies and Methods - To achieve fluency, students should be able to choose flexibly among methods and strategies to solve mathematical problems accurately and efficiently. - Students should rearrange formulas to highlight a quantity of interest using the same reasoning as in solving equations. Interpret and explain the results.	Example - Find the radius given the formula $V=\pi r^{2 h}$ by rearranging the equation to solve for the radius, r.

	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)		
8.PAR.4.1	Use the equation $\mathrm{y}=\mathrm{mx}$ (proportional) for a line through the origin to derive the equation $y=m x+b$ (non-proportional) for a line intersecting the vertical axis at b.	Fundamentals - Students should be given opportunities to explore how an equation in the form $y=m x+b$ is a translation of the equation $y=m x$. - In Grade 7, students had multiple opportunities to build a conceptual understanding of slope as they made connections to unit rate and analyzed the constant of proportionality for proportional relationships. - Students should be given opportunities to explore and generalize that two lines with the same slope but different intercepts, are also translations of each other. - Students should be encouraged to attend to precision when discussing and defining b (i.e., b is not the intercept; rather, b is the y-coordinate of the y-intercept). Students must understand that the x-coordinate of the y-intercept is always 0 .	Strategies and Methods - Students should be given the opportunity to explore and discover the effects on a graph as the value of the slope and y intercept changes using technology.	Example - The business model for a company selling a service with no flat cost charges \$3 per hour. What would the equation be as a proportional equation? If the company later decides to charge a flat rate of $\$ 10$ for each transaction with the same per hour cost, what would be the new equation? How do these two equations compare when analyzed graphically? What is the same? What is different? Why?
8.PAR.4.2	Show and explain that the graph of an equation representing an applicable situation in two variables is the set of all its solutions plotted in the coordinate plane.	Strategies and Methods - Students should use algebraic reasoning to show a of all its solutions. - Students continue to build upon their understandi variable is conditioned on another. - Students should relate graphical representations t - Students should use tables to relate solution sets	d explain that the graph g of proportional relatio contextual, mathemati graphical representati	an equation represents the set hips, using the idea that one situations. on the coordinate plane.

FUNCTIONAL \& GRAPHICAL REASONING -relate domain to linear functions, rate of change, linear vs. nonlinear relationships, graphing linear functions, systems of linear equations, parallel and perpendicular lines				
8.FGR.5: Describe the properties of functions to define, evaluate, and compare relationships, and use functions and graphs of functions to model and explain real phenomena.				
	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)		
8.FGR.5.1	Show and explain that a function is a rule that assigns to each input exactly one output.	Strategies and Methods - Students should be able to use algebraic reasoning when formulating an explanation or justification regarding whether or not a relationship is a function or not a function. - Describe the graph of a function as the set of ordered pairs consisting of an input and the corresponding output.		
8.FGR.5.2	Within realistic situations, identify and describe examples of functions that are linear or nonlinear. Sketch a graph that exhibits the qualitative features of a function that has been described verbally.	Strategies and Methods - Students should be able to model practical situations using graphs and interpret graphs based on the situations. - Students should model functions that are nonlinear and explain, using precise mathematical language, how to tell the difference between linear (functions that graph into a straight line) and nonlinear functions (functions that do not graph into a straight line). - Students should analyze a graph by determining whether the function is increasing or decreasing, linear or non-linear. - Students should have the opportunity to explore a variety of graphs including time/distance graphs and time/velocity graphs.		Examples - The function $\mathrm{A}=\mathrm{s}^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line. - Examples such as this can be used to help students learn that graphs can tell stories.
8.FGR.5.3	Relate the domain of a linear function to its graph and where applicable to the quantitative relationship it describes.	Example - If the function $\mathrm{h}(\mathrm{n})$ gives the number of hours it takes a person to assemble n engines in a factory, then the set of positive integers would be an appropriate domain for the function.		
8.FGR.5.4	Compare properties (rate of change and initial value) of two functions used to model an authentic situation each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	Example - Given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.		
8.FGR.5.5	Write and explain the equations $y=m x+b$ (slope-intercept form), $\mathrm{Ax}+\mathrm{By}=\mathrm{C}$ (standard form), and ($\left.y-y_{1}\right)=m\left(x-x_{1}\right)$ (point-slope form) as defining a linear function whose graph is a straight line to reveal and explain different properties of the function.	Strategies and Methods - Students should be able to rewrite linear equations written in different forms depending on the given situation.	Terminology - Forms of linear equations: standard, slope-intercept, and point-slope forms.	

8.FGR.5.6	Write a linear function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.		Strategies and Methods - Problems should be practical and applicable to represent real situations, providing a purpose for analyzing equivalent forms of an expression. - Rewrite a function expressed in standard form to slope-intercept form to make sense of a meaningful situation.				
8.FGR.5.7	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph.		Strategies and Methods - This learning objective also includes verbal descriptions and scenarios of equations, tables, and graphs.				
8.FGR.5.8	Explain the meaning of the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.		Strategies and Methods - This learning objective also includes verbal descriptions and scenarios of equations, tables, and graphs.				
8.FGR.5.9	Graph and analyze linear functions expressed in various algebraic forms and show key characteristics of the graph to describe applicable situations.		Strategies and Methods - Use verbal descriptions, tables and graphs created by hand and/or using technology.		Terminology - Various forms of linear functions include standard, slopeintercept, and point-slope forms. - Key features include rate of change (slope), intercepts, strictly increasing or strictly decreasing, positive, negative, and end behavior.		
8.FGR.6: Solve practical, linear problems involving situations using bivariate quantitative data.							
Expectations		Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)					
8.FGR.6.1	Show that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, visually fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line of best fit.	Strategies and Methods - Students should discover the line of best fit as the one that comes closest to most of the data points.		Terminology - The line of best fit shows the linear relationship between two variables in a data set.		Example - Given a set of data points, a student creates a scatter plot (see below), approximates a line of best fit, and wr the equation for the approximated lin	

8.FGR.6.2	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercepts.	Strategies and Methods - Students should solve practical, linear problems involving situations using bivariate quantitative data.		Terminology - A linear model shows the relationship between two variables in a data set, such as lines of best fit.
8.FGR.6.3	Explain the meaning of the predicted slope (rate of change) and the predicted intercept (constant term) of a linear model in the context of the data.	Terminology - It is important to indicate 'predicted' to indicate this is a probabilistic interpretation in context, and not deterministic.		Example - In a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
8.FGR.6.4	Use appropriate graphical displays from data distributions involving lines of best fit to draw informal inferences and answer the statistical investigative question posed in an unbiased statistical study.	Fundamentals - Students should be given opportunities to analyze the data distribution displayed graphically to answer the statistical investigative question generated from a realistic situation.		
8.FGR.7: Justify and use various strategies to solve systems of linear equations to model and explain realistic phenomena.				
	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)		
8.FGR.7.1	Interpret and solve relevant mathematical problems leading to two linear equations in two variables.	Strategies and Methods - Students should have a variety of opportunities to explore problems using technology and tools in order to strengthen their conceptual understanding of systems of linear equations as they visually analyze what happens when the variables are manipulated in the problem.	Examples - A trampoline park that you frequently go to is $\$ 9$ per visit. You have the option to purchase a monthly membership for $\$ 30$ and then pay $\$ 4$ for each visit. Explain whether you will buy the membership, and why. Option A: y = \$9x Option B: $y=\$ 30+\$ 4 x$ - Anya is traveling from out of town. This is the only time she will visit this trampoline park. Which option should she choose? - Jin plans on going to the trampoline park seven times this month. Which option should he choose? What does the point of intersection of the graphs represent?	
8.FGR.7.2	Show and explain that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because the points of	Strategies and Methods - Students should be provided with opportunities to explore systems of equations represented on interactive graphs to analyze and interpret the solutions to the systems. - Students should be able to analyze and explain solutions to systems of equations presented numerically, algebraically, and graphically.		

	intersection satisfy both equations simultaneously.		
8.FGR.7.3	Approximate solutions of two linear equations in two variables by graphing the equations and solving simple cases by inspection.	Strategies and Methods - Students should be provided with opportunities to explore systems of equations represented on interactive graphs to analyze and interpret the solutions to the systems. - Students should have opportunities to analyze and explore problems using technology and tools to strengthen their conceptual understanding of systems of linear equations.	Example - A student can graph two linear equations that represent a culturally relevant problem using digital graphing tools (i.e., Desmos) and visually make sense of the graphed lines based on a given context. A student can provide a verbal or written explanation of their reasoning.
8.FGR.7.4	Analyze and solve systems of two linear equations in two variables algebraically to find exact solutions.	Strategies and Methods - Students should be able to analyze and solve pairs of simultaneous linear equations (systems of linear equations) within realistic situations and an expressed phenomenon. - Students should validate their graphical approximations using algebraic strategies. - Students should use substitution and elimination to solve systems of linear equations.	Example - Given coordinates for two pairs of points, a student can determine whether the line through the first pair of points intersects the line through the second pair.
8.FGR.7.5	Create and compare the equations of two lines that are either parallel to each other, perpendicular to each other, or neither parallel nor perpendicular.	Strategies and Methods - Students should have the opportunity to explore visual graphs of equations that are parallel, perpendicular or neither parallel nor perpendicular to develop a deep, conceptual understanding. - As students are comparing parallelism and perpendicularity of lines, they should see the connection as a system of equations. - Students should be able to explain if systems are consistent or inconsistent.	Example - A student can recognize that there is no solution to the system of equations formed by $3 x+2 y=5$ and $3 x+2 y=6$ because the lines are parallel and $3 x+2 y$ cannot simultaneously be 5 and 6 .

GEOMETRIC \& SPATIAL REASONING - Pythagorean theorem and volume of triangles, rectangles, cones, cylinders, and spheres

8.GSR.8: Solve geometric problems involving the Pythagorean Theorem and the volume of geometric figures to explain real phenomena.

	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)					
8.GSR.8.1	Explain a proof of the Pythagorean Theorem and its converse using visual models.	Age/Developmentally Appropriate - Students are not limited to a particular proof for the Pythagorean Theorem or its converse.		Strategies and Methods - Geometric and spatial reasoning should be used when explaining the Pythagorean Theorem.			Example
8.GSR.8.2	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles within authentic, mathematical problems in two and three dimensions.	Age/Developmentally Appropriate - Triangle dimensions may be rational or irrational numbers.	Strategies and Methods - Geometric and spatial reasoning should be used to solve problems involving the Pythagorean theorem. - Models and drawings may be useful as students solve contextual problems in two- and threedimensions.			Example How tall is the Great Pyramid of Giza?	
8.GSR.8.3	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system in practical, mathematical problems.	Age/Developmentally Appropriate - Students should apply their understanding of the Pythagorean Theorem to find the distance. Use of the distance formula is not an expectation for this grade level.	Strategies - Stud provi to sol using strat	nd Methods ts should be ed opportunities e problems variety of ies.	Example	There are two school. One p the traffic light light to the sch street directly path along C St	ths that Sarah can take when walking to is to take is to take A Street from home to nd then walk on B street from the traffic I, and the other way is for her to take C the school. How much shorter is the direct et?

$7^{\text {th }}$ Grade: Create statistical investigative questions that can be answered using quantitative data, collect data through random sampling to make inferences about population distributions using data distributions, and interpret data to answer statistical investigative questions.

Ask	Collect	Analyze	Interpret
Create a statistical investigative question that can be answered by gathering data from real situations and determine strategies for gathering data to answer the statistical investigative question.	Use statistical reasoning and methods to predict characteristics of a population by examining the characteristics of a representative sample. Recognize the potential limitations and scope of the sample to the population. Analyze sampling methods and conclude that random sampling produces and supports valid inferences.	Use data from repeated random samples to evaluate how much a sample mean is expected to vary from a population mean. Simulate multiple samples of the same size.	Use appropriate graphical displays and numerical summaries from data distributions with categorical or quantitative (numerical) variables to draw informal inferences about two samples or populations.

Instructional Supports

- Students should have opportunities to create and answer statistical investigative questions about a population by collecting data from a representative sample, using random sampling techniques to collect the data.
- Students should have opportunities to critique examples of sampling techniques. Students should conclude when conditions of sampling methods may be biased, random, and not representative of the population. Students should use sample data collected to draw inferences.
- \quad Students should use side by side bar graphs or segmented bar graphs to compare categorical data distributions of samples from two populations. Students should compare data of two samples or populations displayed in box plots and dot plots to make inferences.
- Students should be able to draw inferences using measures of central tendency (mean, median, mode) and/or variability (range, mean absolute deviation and interquartile range) from random samples. Conclusions should be made related to a population, using a random sample, by describing a distribution using measures of central tendency (mean, median, mode) and/or variability (range, mean absolute deviation, and interquartile range).
$8^{\text {th }}$ Grade: Create statistical investigative questions that can be answered using quantitative data. Collect, analyze, and interpret patterns of bivariate data and interpret linear models to answer statistical questions and solve real problems.

Ask	Collect	Analyze	Interpret
Create a			
statistical			
investigative	Use the equation of a linear model to solve problems question that can be answered by gathering data from real situations and determine strategies for gathering data to measurement data, interpreting answer the statistical investigative	Construct and interpret scatter plots for bivariate intercepts.	quantitative data to investigate patterns of association between two
question.	quantities.	Show that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, visually fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line of best fit.	
		Explain the meaning of the predicted slope (rate of change) and the predicted intercept (constant term) of a linear model in the context of the data.	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercepts.

Instructional Supports

- Students should be able to use statistical reasoning to describe patterns of association, such as clustering, outliers, positive or negative association, linear association, and nonlinear association through the analysis of data presented in multiple ways.
- Students should be given opportunities to analyze the data distribution displayed graphically to answer the statistical investigative question generated from a real situation.
- \quad Students should solve practical, linear problems involving situations using bivariate quantitative data. A linear model shows the relationship between two variables in a data set, such as lines of best fit. Students should discover the line of best fit as the one that comes closest to most of the data points and shows the linear relationship between two variables in a data set.
- It is important to indicate 'predicted' slope to indicate this is a probabilistic interpretation in context, and not deterministic.

COMPUTATIONAL STRATEGIES FOR WHOLE NUMBERS

Georgia Department of Education

Mathematics Place-Value Strategies and US Traditional Algorithms

Specific mathematics strategies for teaching and learning are not mandated by the Georgia Department of Education or assessed on state or federally mandated tests. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and-makes sense to them. It is critical that teachers and parents remain partners to help each child grow to become a mathematically literate citizen. These standards preserve and affirm local control and flexibility.

In mathematics, the emphasis is on the reasoning and thinking about the quantities within mathematical contexts. Algorithms, tape diagrams (bar models), and number line representations are a few examples of ways that students communicate their strategic thinking in a written form.

It is important to note that the examples of strategies provided in the tables are not all inclusive. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and makes sense to them.

Subtraction Example: 2145-178

Number Line Representation:

It is important to note that the examples of strategies provided in the tables are not all inclusive. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and makes sense to them.

Multiplication Example: 25×24		
US Traditional Algorithm: $\begin{array}{r} 1_{2} \\ 25 \\ \times \quad 24 \\ \hline \\ \hline \quad 100 \\ +\quad 500 \\ \hline 600 \end{array}$	Description: As students make sense of and use multiplication strategies and algorithms, it is important for them to demonstrate a deep understanding of the relationship between the quantities presented in the mathematics number sentence and to attend to precision in their explanations. Students are encouraged to use strategies such as partial products, friendly numbers, and a combination of known facts to determine solutions to new problems. It is also important for students to maintain the ability to choose which part-whole strategy is best to communicate their mathematical thinking. Flexibility in thinking is key!	Place Value Algorithm: $\begin{array}{rrl} & 25 \\ \times & 24 \\ \hline & 400 & \\ \hline & (20 \times 20) \\ + & 100 & (20 \times 5) \\ + & 80 & (4 \times 20) \\ + & 20 & (4 \times 5) \\ \cline { 1 - 2 } & 600 & \end{array}$
Area Representation (Part	Products): $(5 \times 4)+(5 \times 20)+(20 \times 4)+(20 \times 20)=(25 \times 24)$	

It is important to note that the examples of strategies provided in the tables are not all inclusive. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and makes sense to them.

Division Example: $1917 \div 9$

Number Line Representation:

$$
200+10+3=213
$$

It is important to note that the examples of strategies provided in the tables are not all inclusive. Students may solve problems in different ways and have the flexibility to choose a mathematical strategy that allows them to make sense of and strategically solve problems using efficient methods that are most comfortable for and makes sense to them.

